A new hybrid explicit/implicit in-plane-out-of-plane separated representation for the solution of dynamic problems defined in plate-like domains

Autor: Eberhard Haug, Francisco Chinesta, Giacomo Quaranta, Alain Trameçon, Brice Bognet, Rubén Ibáñez
Přispěvatelé: École Centrale de Nantes (ECN), Institut de Recherche en Génie Civil et Mécanique (GeM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Institut de Calcul Intensif (ICI), ESI Group (ESI), ESI Group, Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Computers & Structures
Computers and Structures
Computers and Structures, Elsevier, 2018, 210, pp.135-144. ⟨10.1016/j.compstruc.2018.05.001⟩
ISSN: 0045-7949
DOI: 10.1016/j.compstruc.2018.05.001⟩
Popis: International audience; The present paper extends in-plane-out-of-plane separated representations successfully used for addressing fully 3D model solutions defined in plate-like domain, to dynamics. Common time integration are performed using explicit or implicit strategies. Even if the implementation of implicit integration schemes into a 3D in-plane-out-of-plane separated representation does not imply major difficulties, the use of explicit integration preferable in many applications becomes a tricky issue. In fact the mesh employed for discretizing the out-of-plane dimension (thickness) determines the maximum time-step ensuring stability. In this paper we introduce a new efficient hybrid explicit/implicit in-plane-out-of-plane separated representation for dynamic problems defined in plate-like domains that allows computing 3D solutions with the stability constraint exclusively determined by the coarser in-plane discretization.
Databáze: OpenAIRE