Limiting Distribution of the Rightmost Particle in Catalytic Branching Brownian Motion

Autor: Simon R. Harris, Sergey Bocharov
Rok vydání: 2016
Předmět:
Zdroj: Bocharov, S & Harris, S C 2016, ' Limiting distribution of the rightmost particle in catalytic branching Brownian motion ', Electronic Communications in Probability, vol. 21, Paper no. 70 . https://doi.org/10.1214/16-ECP22
Electron. Commun. Probab.
DOI: 10.48550/arxiv.1603.01600
Popis: We study the model of binary branching Brownian motion with spatially-inhomogeneous branching rate $\beta \delta_0(\cdot)$, where $\delta_0(\cdot)$ is the Dirac delta function and $\beta$ is some positive constant. We show that the distribution of the rightmost particle centred about $\frac{\beta}{2}t$ converges to a mixture of Gumbel distributions according to a martingale limit. Our results form a natural extension to S. Lalley and T. Sellke [6] for the degenerate case of catalytic branching.
Comment: 12 pages
Databáze: OpenAIRE