Benzimidazole-linked pyrazolo[1,5-a]pyrimidine conjugates: synthesis and detail evaluation as potential anticancer agents

Autor: Chandrakant Bagul, Garikapati Koteswara Rao, Immadi Veena, Ravindra Kulkarni, Jaki R. Tamboli, Ravikumar Akunuri, Siddiq Pasha Shaik, Manika Pal-Bhadra, Ahmed Kamal
Rok vydání: 2022
Předmět:
Zdroj: Molecular diversity.
ISSN: 1573-501X
Popis: A library of benzimidazole briged pyrazolo[1,5-a]pyrimidine (6a-q) was designed, synthesized and subjected for evaluation for cytotoxic potential. Antiproliferative activity, ranging from 3.1-51.5 μM, was observed against a panel of cancer cell lines which included MCF-7 (breast cancer), A549 (lung cancer), HeLa (cervical cancer) and SiHa (cervical cancer). Among them, 6k, 6l, 6n and 6o have shown significant cytotoxicity and were investigated further to study their probable mechanism of action against MCF-7 cell line. Accumulation of cells at sub-G1 phase was observed in flow cytometric analysis. The detachment of cells from substratum and membrane blebbing seen under bright field microscopy supports the ability of these conjugates to induce apoptosis. Immunostaining and western blot analysis showed EGFR, p-EGFR, STAT3, and p-STAT3 significant downregulation. Western blot analysis demonstrated an elevated level of apoptotic proteins such as p53, p21, Bax, whereas a decrease in the antiapoptotic protein Bcl-2 and procaspase-9, confirming the ability of these conjugates to trigger cell death by apoptosis. EGFR kinase assay confirms the specific activity of conjugates. Molecular docking simulation study disclosed that these molecules fit well in ATP-binding pocket of EGFR. The analysis of docking poses and the atomic interactions of different conjugates rationalize the structural-activity relationship in this series. Benzimidazole-linked pyrazolo[1,5-a]pyrimidine conjugates were synthesized and evaluated for their anticancer potential. All the conjugates have significant anticancer potential. Further mechanistic studies revealed that these conjugates arrest cancer cell growth by EGFR/STAT3 inhibition.
Databáze: OpenAIRE