Acrylamide in food: Progress in and prospects for genetic and agronomic solutions
Autor: | Nigel G. Halford, Sarah Raffan |
---|---|
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
Food industry Asparagine synthetase crop composition 01 natural sciences Crispbread chemistry.chemical_compound Crop storage Crop nutrition wheat Major Review Asparagine media_common cereals Crop disease Major Reviews digestive oral and skin physiology food and beverages 04 agricultural and veterinary sciences Maillard reaction food safety Acrylamide Wheat symbols potato Potato Processing contaminants Cereals Biology crop nutrition Food safety crop storage symbols.namesake Rye food media_common.cataloged_instance Plant breeding European union crop disease business.industry Crop composition food.food Biotechnology rye chemistry processing contaminants 040103 agronomy & agriculture 0401 agriculture forestry and fisheries business Agronomy and Crop Science 010606 plant biology & botany |
Zdroj: | The Annals of Applied Biology |
ISSN: | 0003-4746 |
Popis: | Acrylamide is a processing contaminant and Group 2a carcinogen that was discovered in foodstuffs in 2002. Its presence in a range of popular foods has become one of the most difficult problems facing the food industry and its supply chain. Wheat, rye and potato products are major sources of dietary acrylamide, with biscuits, breakfast cereals, bread (particularly toasted), crispbread, batter, cakes, pies, French fries, crisps and snack products all affected. Here we briefly review the history of the issue, detection methods, the levels of acrylamide in popular foods and the risk that dietary acrylamide poses to human health. The pathways for acrylamide formation from free (non‐protein) asparagine are described, including the role of reducing sugars such as glucose, fructose and maltose and the Maillard reaction. The evolving regulatory situation in the European Union and elsewhere is discussed, noting that food businesses and their suppliers must plan to comply not only with current regulations but with possible future regulatory scenarios. The main focus of the review is on the genetic and agronomic approaches being developed to reduce the acrylamide‐forming potential of potatoes and cereals and these are described in detail, including variety selection, plant breeding, biotechnology and crop management. Obvious targets for genetic interventions include asparagine synthetase genes, and the asparagine synthetase gene families of different crop species are compared. Current knowledge on crop management best practice is described, including maintaining optimum storage conditions for potatoes and ensuring sulphur sufficiency and disease control for wheat. The presence of acrylamide in a range of popular foods has become one of the most difficult problems facing the food industry and its supply chain. Wheat, rye and potato products are major sources of dietary acrylamide, with biscuits, breakfast cereals, bread (particularly toasted), crisp bread, batter, cakes, pies, French fries, crisps and snack products all affected. This review covers all aspects of the problem, with its main focus on the genetic and agronomic approaches being developed to reduce the acrylamide‐forming potential of potatoes and cereals, including variety selection, plant breeding, biotechnology and crop management. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |