Global solutions to the spherically symmetric Einstein-scalar field system with a positive cosmological constant in Bondi coordinates
Autor: | João L. Costa, Filipe C. Mena |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Asymptotic analysis
General Mathematics FOS: Physical sciences Cosmological constant General Relativity and Quantum Cosmology (gr-qc) 01 natural sciences General Relativity and Quantum Cosmology symbols.namesake Mathematics - Analysis of PDEs 0103 physical sciences FOS: Mathematics Initial value problem 0101 mathematics Einstein Mathematical physics Physics 010308 nuclear & particles physics 010102 general mathematics Null (physics) Massless particle Einstein field equations symbols Scalar field Analysis Analysis of PDEs (math.AP) |
Popis: | We consider a characteristic initial value problem, with initial data given on a future null cone, for the Einstein (massless) scalar field system with a positive cosmological constant, in Bondi coordinates. We prove that, for small data, this system has a unique global classical solution which is causally geodesically complete to the future and decays polynomially in radius and exponentially in Bondi time, approaching the de Sitter solution. 25 pages, to appear in Journal of Hyperbolic Differential Equations |
Databáze: | OpenAIRE |
Externí odkaz: |