Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds

Autor: Eui Chul Kim
Rok vydání: 2010
Předmět:
Zdroj: Differential Geometry and its Applications. 28:648-655
ISSN: 0926-2245
Popis: On a 3-dimensional closed Sasakian spin manifold ( M 3 , g ) , the spectrum of the Dirac operator D is in general not symmetric with respect to zero. Let λ 1 − 0 and λ 1 + > 0 be the first negative and positive eigenvalue of D , respectively. Let S min denote the minimum of the scalar curvature of ( M 3 , g ) with S min > − 3 2 . We prove in this paper that λ 1 − ⩽ 1 − 2 S min + 4 2 holds generally and that λ 1 + satisfies λ 1 + ⩾ S min + 6 8 whenever λ 1 + belongs to the interval λ 1 + ∈ ( 1 2 , 5 2 ) . It turns out that each of these estimates improves Friedrich's inequality for the first eigenvalue of the Dirac operator [Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrummung, Math. Nachr. 97 (1980) 117–146].
Databáze: OpenAIRE