Diagnosing Gender Bias in Image Recognition Systems

Autor: Emily Bello-Pardo, Jeffrey W. Lockhart, Carly R. Knight, Carsten Schwemmer, Stan Oklobdzija, Martijn Schoonvelde
Přispěvatelé: Research Centre Arts in Society (AiS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
SocArXiv|Social and Behavioral Sciences|Sociology|Science
Knowledge
and Technology

bias
stereotypes
Computer science
SocArXiv|Social and Behavioral Sciences|Sociology|Methodology
Stereotyp
computational social science
bepress|Social and Behavioral Sciences|Political Science
0504 sociology
gender-specific factors
gender
050602 political science & public administration
Bild
Computer vision
Sozialwissenschaften
Soziologie

bepress|Social and Behavioral Sciences|Sociology|Theory
Knowledge and Science

05 social sciences
General Social Sciences
0506 political science
bepress|Social and Behavioral Sciences|Sociology
lcsh:Sociology (General)
bepress|Social and Behavioral Sciences|Sociology|Quantitative
Qualitative
Comparative
and Historical Methodologies

ddc:300
Computational sociology
bepress|Social and Behavioral Sciences|Sociology|Gender and Sexuality
SocArXiv|Social and Behavioral Sciences|Sociology|Race
Gender
and Class

050402 sociology
Scale (ratio)
Twitter
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
lcsh:HM401-1281
SocArXiv|Social and Behavioral Sciences|Political Science
bepress|Social and Behavioral Sciences|Sociology|Civic and Community Engagement
SocArXiv|Social and Behavioral Sciences|Sociology|Sex and Gender
SocArXiv|Social and Behavioral Sciences|Sociology
lcsh:Social Sciences
Gender bias
image recognition
Social sciences
sociology
anthropology

Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Online-Medien
business.industry
Gender
online media
lcsh:H
Frauen- und Geschlechterforschung
Methods and Techniques of Data Collection and Data Analysis
Statistical Methods
Computer Methods

geschlechtsspezifische Faktoren
picture
bepress|Social and Behavioral Sciences
Women's Studies
Feminist Studies
Gender Studies

Artificial intelligence
SocArXiv|Social and Behavioral Sciences
business
bepress|Social and Behavioral Sciences|Sociology|Inequality and Stratification
SocArXiv|Social and Behavioral Sciences|Sociology|Political Sociology
stereotype
Zdroj: Socius, Vol 6 (2020)
Socius, 6
Socius: Sociological Research for a Dynamic World
ISSN: 2378-0231
Popis: Image recognition systems offer the promise to learn from images at scale without requiring expert knowledge. However, past research suggests that machine learning systems often produce biased output. In this article, we evaluate potential gender biases of commercial image recognition platforms using photographs of U.S. members of Congress and a large number of Twitter images posted by these politicians. Our crowdsourced validation shows that commercial image recognition systems can produce labels that are correct and biased at the same time as they selectively report a subset of many possible true labels. We find that images of women received three times more annotations related to physical appearance. Moreover, women in images are recognized at substantially lower rates in comparison with men. We discuss how encoded biases such as these affect the visibility of women, reinforce harmful gender stereotypes, and limit the validity of the insights that can be gathered from such data.
Databáze: OpenAIRE