Fractional Laplacians on ellipsoids

Autor: Alberto Saldaña, Sven Jarohs, Nicola Abatangelo
Přispěvatelé: Abatangelo N., Jarohs S., Saldana A.
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematics in Engineering, Vol 3, Iss 5, Pp 1-34 (2021)
Popis: We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of $s$-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for $s\in(1,\sqrt{3}+3/2)$ in any dimension $n\geq 2$. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties and we give some examples.
6 pictures, 27 pages
Databáze: OpenAIRE