Unequivocal signatures of the crossover to Anderson localization in realistic models of disordered quasi-one-dimensional materials
Autor: | Juan José Sáenz, Luis S. Froufe-Pérez, Stephan Roche, Alejandro Lopez-Bezanilla |
---|---|
Přispěvatelé: | Department of Energy (US), Ministerio de Economía y Competitividad (España), European Commission, Swiss National Science Foundation |
Rok vydání: | 2021 |
Předmět: |
Physics
Anderson localization Theoretical study Statistical study Crossover Conductance 02 engineering and technology Carbon nanotube Quasi-one-dimensional materials 021001 nanoscience & nanotechnology 01 natural sciences law.invention Single parameter scaling law 0103 physical sciences First-principles simulations Quasi one dimensional Scaling equations Statistical physics Scaling equation 010306 general physics 0210 nano-technology Scaling Conductance distribution |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname Digital.CSIC. Repositorio Institucional del CSIC Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) |
Popis: | The only unequivocal known criterion for single-parameter scaling Anderson localization relies on the knowledge of the full conductance statistics. To date, theoretical studies have been restricted to model systems with symmetric scatterers, hence lacking universality. We present an in-depth statistical study of conductance distributions P(g), in disordered ‘micrometer-long’ carbon nanotubes using first principles simulations. In perfect agreement with the Dorokov-Mello-Pereyra-Kumar scaling equation, the computed P(g) exhibits a nontrivial, non-Gaussian, crossover to Anderson localization which could be directly compared with experiments. This work was supported by the US Department of Energy and by the Spanish Ministerio de Economía y Competitividad and European Regional Development Fund (Grant No. FIS2015-69295-C3-3-P). This work benefited from support by the National Center of Competence in Research BioInspired Materials funded by the Swiss National Science Foundation. |
Databáze: | OpenAIRE |
Externí odkaz: |