Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study
Autor: | Helmut Fritzsche, David Mitlin, Colin Ophus, J. Haagsma, W.P. Kalisvaart, Eric Poirier, C. T. Harrower, Erik J. Luber, Beniamin Zahiri |
---|---|
Rok vydání: | 2010 |
Předmět: |
Intermetallics
Hydrogen Renewable Energy Sustainability and the Environment Metallurgy Kinetics Energy Engineering and Power Technology chemistry.chemical_element Sorption Hydrogen storage Condensed Matter Physics Catalysis Fuel Technology chemistry Chemical engineering Desorption Absorption (chemistry) Ternary operation Mg-based alloys |
Zdroj: | International Journal of Hydrogen Energy. 35:2091-2103 |
ISSN: | 0360-3199 |
Popis: | This study focused on hydrogen sorption properties of 1.5 μm thick Mg-based films with Al, Fe and Ti as alloying elements. The binary alloys are used to establish as baseline case for the ternary Mg–Al–Ti, Mg–Fe–Ti and Mg–Al–Fe compositions. We show that the ternary alloys in particular display remarkable sorption behavior: at 200 °C the films are capable of absorbing 4–6 wt% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable over cycling for the Mg–Al–Ti and Mg–Fe–Ti alloys. Even after 100 absorption/desorption cycles, no degradation in capacity or kinetics is observed. For Mg–Al–Fe, the properties are clearly worse compared to the other ternary combinations. These differences are explained by considering the properties of all the different phases present during cycling in terms of their hydrogen affinity and catalytic activity. Based on these considerations, some general design principles for Mg-based hydrogen storage alloys are suggested. |
Databáze: | OpenAIRE |
Externí odkaz: |