Kinetic Mechanisms of IκB-related Kinases (IKK) Inducible IKK and TBK-1 Differ from IKK-1/IKK-2 Heterodimer

Autor: Q. Khai Huynh, Ann M. Donnelly, Catherine S. Tripp, Sumathy Mathialagan, Nandini Kishore
Rok vydání: 2002
Předmět:
Zdroj: Journal of Biological Chemistry. 277:12550-12558
ISSN: 0021-9258
DOI: 10.1074/jbc.m111526200
Popis: Nuclear factor-kappaB activation depends on phosphorylation and degradation of its inhibitor protein, IkappaB. The phosphorylation of IkappaBalpha on Ser(32) and Ser(36) is initiated by an IkappaB kinase (IKK) complex that includes a catalytic heterodimer composed of IkappaB kinase 1 (IKK-1) and IkappaB kinase 2 (IKK-2) as well as a regulatory adaptor subunit, NF-kappaB essential modulator. Recently, two related IkappaB kinases, TBK-1 and IKK-i, have been described. TBK-1 and IKK-i show sequence and structural homology to IKK-1 and IKK-2. TBK-1 and IKK-i phosphorylate Ser(36) of IkappaBalpha. We describe the kinetic mechanisms in terms of substrate and product inhibition of the recombinant human (rh) proteins, rhTBK-1, rhIKK-I, and rhIKK-1/rhIKK-2 heterodimers. The results indicate that although each of these enzymes exhibits a random sequential kinetic mechanism, the effect of the binding of one substrate on the affinity of the other substrate is significantly different. ATP has no effect on the binding of an IkappaBalpha peptide for the rhIKK-1/rhIKK-2 heterodimer (alpha = 0.99), whereas the binding of ATP decreased the affinity of the IkappaBalpha peptide for both rhTBK-1 (alpha = 10.16) and rhIKK-i (alpha = 62.28). Furthermore, the dissociation constants of ATP for rhTBK-1 and rhIKK-i are between the expected values for kinases, whereas the dissociation constants of the IkappaBalpha peptide for each IKK isoforms is unique with rhTBK-1 being the highest (K(IkappaBalpha) = 69.87 microm), followed by rhIKK-i (K(IkappaBalpha) = 5.47 microm) and rhIKK-1/rhIKK-2 heterodimers (K(IkappaBalpha) = 0.12 microm). Thus this family of IkappaB kinases has very unique kinetic properties.
Databáze: OpenAIRE