Solution Blow Spun Silica Nanofibers: Influence of Polymeric Additives on the Physical Properties and Dye Adsorption Capacity
Autor: | Eliton S. Medeiros, Gelmires de Araújo Neves, Lisiane Navarro de Lima Santana, Artur P. Klamczynski, Romualdo Rodrigues Menezes, Gregory M. Glenn, Lucas Leite Severo, Rosiane Maria da Costa Farias |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
blown spun silica nanofibers
Materials science Aqueous solution Polyvinylpyrrolidone General Chemical Engineering PVP molecular weight dye adsorption Article physical properties law.invention Chemistry Adsorption Chemical engineering law Phase (matter) Nanofiber medicine General Materials Science Calcination Porosity Mesoporous material QD1-999 medicine.drug |
Zdroj: | Nanomaterials Volume 11 Issue 11 Nanomaterials, Vol 11, Iss 3135, p 3135 (2021) |
ISSN: | 2079-4991 |
Popis: | The physical properties of porous silica nanofibers are an important factor that impacts their performance in various applications. In this study, porous silica nanofibers were produced via solution blow spinning (SBS) from a silica precursor/polymer solution. Two polyvinylpyrrolidone (PVP, Mw = 360,000 and 1,300,000) were chosen as spinning aids in order to create different pore properties. The effect of their physical properties on the adsorption of methylene blue (MB) in an aqueous solution was explored. After forming, the nanofibers were calcined to remove the organic phase and create pores. The calcined nanofibers had a large amount of micro and mesopores without the use of additional surfactants. The molecular weight of the PVP impacted the growth of silica particles and consequently the pore size. High Mw PVP inhibited the growth of silica particles, resulting in a large volume of micropores. On the other hand, silica nanofibers with a high fraction of mesopores were obtained using the lower Mw PVP. These results demonstrate a simple method of producing blow spun silica nanofibers with defined variations of pore sizes by varying only the molecular weight of the PVP. In the adsorption process, the accessible mesopores improved the adsorption performance of large MB molecules. |
Databáze: | OpenAIRE |
Externí odkaz: |