Inkjet printing and electrical characterisation of DNA-templated cadmium sulphide nanowires

Autor: Atsinafe Barnabas Oshido, R N Nurdillayeva, Andrew Houlton, Benjamin R. Horrocks, Andrew R. Pike, Osama El-Zubir, T A Bamford, John Hedley
Rok vydání: 2018
Předmět:
Zdroj: Nanotechnology. 29(13)
ISSN: 1361-6528
Popis: Cadmium sulphide can be templated on λ-DNA molecules to form an aqueous dispersion of CdS/λ-DNA nanowires. Subsequent addition of ethylene glycol to 50% v/v is sufficient to formulate an ink suitable for printing using piezoelectric drop-on-demand technology. Printed droplet arrays show a coffee-ring morphology of individual deposits by fluorescence and Raman microscopy, but upon increasing the number of layers of printed material by repeated printing over each droplet, the dry deposit approaches closer to a disc shape. It is also possible to print parallel tracks by reducing the droplet separation in the array until neighbouring droplets overlap before they dry. The droplets coalesce to form a strip of width roughly equal to the diameter of the droplets. Evaporation-driven capillary flow sends the nanowires to the edges of the strip and when dry they form parallel tracks of CdS/λ-DNA nanowire bundles. Both droplets and tracks were printed onto Pt-on-glass interdigitated microelectrodes (10 μm width, 10 μm gap). The current-voltage characteristics of these two-terminal devices were approximately ohmic, but with some hysteresis. The conductance increased with temperature as a simple activated process with activation energies of 0.57 ± 0.02 eV (tracks) and 0.39 ± 0.02 eV (droplets). The impedance spectra of the printed films were consistent with hopping between CdS grains.
Databáze: OpenAIRE