Predicting Future Occupancy Grids in Dynamic Environment with Spatio-Temporal Learning

Autor: Khushdeep Singh Mann, Abhishek Tomy, Anshul Paigwar, Alessandro Renzaglia, Christian Laugier
Přispěvatelé: Robots coopératifs et adaptés à la présence humaine en environnements (CHROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria), This research work has been supported by the French Government in the scope of the FUI STAR and ES3CAP projects.
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: IV 2022-33rd IEEE Intelligent Vehicles Symposium
IV 2022-33rd IEEE Intelligent Vehicles Symposium, Jun 2022, Aachen, Germany. pp.1-6
HAL
Popis: Reliably predicting future occupancy of highly dynamic urban environments is an important precursor for safe autonomous navigation. Common challenges in the prediction include forecasting the relative position of other vehicles, modelling the dynamics of vehicles subjected to different traffic conditions, and vanishing surrounding objects. To tackle these challenges, we propose a spatio-temporal prediction network pipeline that takes the past information from the environment and semantic labels separately for generating future occupancy predictions. Compared to the current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds and in a relatively complex environment from the nuScenes dataset. Our experimental results demonstrate the ability of spatio-temporal networks to understand scene dynamics without the need for HD-Maps and explicit modeling dynamic objects. We publicly release our occupancy grid dataset based on nuScenes to support further research.
Comment: Accepted as an conference paper at 33rd IEEE Intelligent Vehicles Symposium, 7 pages, 6 figures
Databáze: OpenAIRE