High-Precision Privacy-Preserving Real-Valued Function Evaluation

Autor: Stanislav Peceny, Christina Boura, Ilaria Chillotti, Nicolas Gama, Alexander Petric, Dimitar Jetchev
Přispěvatelé: Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: In Proceedings of Financial Cryptography and Data Security-(FC) 2018
In Proceedings of Financial Cryptography and Data Security-(FC) 2018, 2018, Nieuwpoort, Curaçao. ⟨10.1007/978-3-662-58387-6_10⟩
Financial Cryptography and Data Security ISBN: 9783662583869
Financial Cryptography
DOI: 10.1007/978-3-662-58387-6_10⟩
Popis: We propose a novel multi-party computation protocol for evaluating continuous real-valued functions with high numerical precision. Our method is based on approximations with Fourier series and uses at most two rounds of communication during the online phase. For the offline phase, we propose a trusted-dealer and honest-but-curious aided solution, respectively. We apply our algorithm to train a logistic regression classifier via a variant of Newton’s method (known as IRLS) to compute unbalanced classification problems that detect rare events and cannot be solved using previously proposed privacy-preserving optimization algorithms (e.g., based on piecewise-linear approximations of the sigmoid function). Our protocol is efficient as it can be implemented using standard quadruple-precision floating point arithmetic. We report multiple experiments and provide a demo application that implements our algorithm for training a logistic regression model.
Databáze: OpenAIRE