The GUP and quantum Raychaudhuri equation
Autor: | Lina Alasfar, Elias C. Vagenas, Ahmed Farag Ali, Salwa Alsaleh |
---|---|
Přispěvatelé: | Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
High Energy Physics - Theory
Nuclear and High Energy Physics Uncertainty principle FOS: Physical sciences Raychaudhuri equation General Relativity and Quantum Cosmology (gr-qc) 01 natural sciences correction: quantum General Relativity and Quantum Cosmology crystal renormalization Renormalization Quadratic equation 0103 physical sciences Schwarzschild metric lcsh:Nuclear and particle physics. Atomic energy. Radioactivity black hole: Schwarzschild 010306 general physics Quantum Physics Spacetime 010308 nuclear & particles physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] deformation critical phenomena black hole: temperature Black hole Classical mechanics High Energy Physics - Theory (hep-th) space-time generalized uncertainty principle [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] lcsh:QC770-798 |
Zdroj: | Nuclear Physics Nucl.Phys.B Nucl.Phys.B, 2018, 931, pp.72-78. ⟨10.1016/j.nuclphysb.2018.04.004⟩ Nuclear Physics B, Vol 931, Iss C, Pp 72-78 (2018) |
Popis: | In this paper, we compare the quantum corrections to the Schwarzschild black hole temperature due to quadratic and linear-quadratic generalized uncertainty principle, with the corrections from the quantum Raychaudhuri equation. The reason for this comparison is to connect the deformation parameters $\beta_0$ and $ \alpha_0$ with $\eta$ which is the parameter that characterizes the quantum Raychaudhuri equation. The derived relation between the parameters appears to depend on the relative scale of the system (black hole), which could be read as a beta function equation for the quadratic deformation parameter $\beta_0$. This study shows a correspondence between the two phenomenological approaches and indicates that quantum Raychaudhuri equation implies the existence of a crystal-like structure of spacetime. Comment: V1: 5 pages, REVTeX 4, 4 figures; v2: 6 pages, version accepted in NPB; v3: references updated, to appear in NPB |
Databáze: | OpenAIRE |
Externí odkaz: |