The GUP and quantum Raychaudhuri equation

Autor: Lina Alasfar, Elias C. Vagenas, Ahmed Farag Ali, Salwa Alsaleh
Přispěvatelé: Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
High Energy Physics - Theory
Nuclear and High Energy Physics
Uncertainty principle
FOS: Physical sciences
Raychaudhuri equation
General Relativity and Quantum Cosmology (gr-qc)
01 natural sciences
correction: quantum
General Relativity and Quantum Cosmology
crystal
renormalization
Renormalization
Quadratic equation
0103 physical sciences
Schwarzschild metric
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
black hole: Schwarzschild
010306 general physics
Quantum
Physics
Spacetime
010308 nuclear & particles physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
deformation
critical phenomena
black hole: temperature
Black hole
Classical mechanics
High Energy Physics - Theory (hep-th)
space-time
generalized uncertainty principle
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
lcsh:QC770-798
Zdroj: Nuclear Physics
Nucl.Phys.B
Nucl.Phys.B, 2018, 931, pp.72-78. ⟨10.1016/j.nuclphysb.2018.04.004⟩
Nuclear Physics B, Vol 931, Iss C, Pp 72-78 (2018)
Popis: In this paper, we compare the quantum corrections to the Schwarzschild black hole temperature due to quadratic and linear-quadratic generalized uncertainty principle, with the corrections from the quantum Raychaudhuri equation. The reason for this comparison is to connect the deformation parameters $\beta_0$ and $ \alpha_0$ with $\eta$ which is the parameter that characterizes the quantum Raychaudhuri equation. The derived relation between the parameters appears to depend on the relative scale of the system (black hole), which could be read as a beta function equation for the quadratic deformation parameter $\beta_0$. This study shows a correspondence between the two phenomenological approaches and indicates that quantum Raychaudhuri equation implies the existence of a crystal-like structure of spacetime.
Comment: V1: 5 pages, REVTeX 4, 4 figures; v2: 6 pages, version accepted in NPB; v3: references updated, to appear in NPB
Databáze: OpenAIRE