Selectivity Map for Molecular Beam Epitaxy of Advanced III-V Quantum Nanowire Networks

Autor: Sara Martí-Sánchez, Sebastian Heedt, Peter Krogstrup, Alexandra Fursina, Timm Swoboda, Leo P. Kouwenhoven, Francesco Borsoi, Pavel Aseev, Jordi Arbiol, Joachim E. Sestoft, Luca Binci, R. Koops, Guanzhong Wang, Emanuele Uccelli, Filip Krizek, Frenk Boekhout, Philippe Caroff
Přispěvatelé: Universidad Autónoma de Barcelona, Microsoft Research, La Caixa, Generalitat de Catalunya, Ministerio de Economía y Competitividad (España), Aseev, Pavel [0000-0003-0343-9302], Arbiol, Jordi [0000-0002-0695-1726], Aseev, Pavel, Arbiol, Jordi
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nano Letters, 1, 19, 218-227
Digital.CSIC. Repositorio Institucional del CSIC
instname
Nano Letters
Aseev, P, Fursina, A, Boekhout, F, Krizek, F, Sestoft, J E, Borsoi, F, Heedt, S, Wang, G, Binci, L, Marti-Sanchez, S, Swoboda, T, Koops, R, Uccelli, E, Arbiol, J, Krogstrup, P, Kouwenhoven, L P & Caroff, P 2019, ' Selectivity Map for Molecular Beam Epitaxy of Advanced III-V Quantum Nanowire Networks ', Nano Letters, vol. 19, no. 1, pp. 218-227 . https://doi.org/10.1021/acs.nanolett.8b03733
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Nano Letters: a journal dedicated to nanoscience and nanotechnology, 19(1)
ISSN: 2013-0295
1530-6984
Popis: Selective-area growth is a promising technique for enabling of the fabrication of the scalable III–V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain undefined. Herein, we present a set of experimental techniques that unambiguously establish the parameter space window resulting in selective III–V nanowire networks growth by molecular beam epitaxy. Selectivity maps are constructed for both GaAs and InAs compounds based on in situ characterization of growth kinetics on GaAs(001) substrates, where the difference in group III adatom desorption rates between the III–V surface and the amorphous mask area is identified as the primary mechanism governing selectivity. The broad applicability of this method is demonstrated by the successful realization of high-quality InAs and GaAs nanowire networks on GaAs, InP, and InAs substrates of both (001) and (111)B orientations as well as homoepitaxial InSb nanowire networks. Finally, phase coherence in Aharonov–Bohm ring experiments validates the potential of these crystals for nanoelectronics and quantum transport applications. This work should enable faster and better nanoscale crystal engineering over a range of compound semiconductors for improved device performance.
The project was supported by Microsoft Station Q (Delft). S. Martí-Sanchez acknowledges funding from “Programa Internacional de Becas “la Caixa″-Severo Ochoa”. ICN2 members acknowledge funding from Generalitat de Catalunya 2017 SGR 327. ICN2 acknowledges support from the Severo Ochoa Programme (MINECO, grant no. SEV-2013-0295) and is funded by the CERCA Programme/Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autonoma de Barcelona Materials Science PhD program.
Databáze: OpenAIRE