Effects of acute aerobic, resistance and combined exercises on 24-h glucose variability and skeletal muscle signalling responses in type 1 diabetics
Autor: | Roberta Saltarelli, Elena Barbieri, Dean Minnock, Giacomo Valli, Vilberto Stocchi, Serena Contarelli, Giuseppe De Vito, Carel W. le Roux, Giosuè Annibalini, Mauricio Krause |
---|---|
Rok vydání: | 2020 |
Předmět: |
Blood Glucose
Male Anabolism Physiology p38 Mitogen-Activated Protein Kinases 0302 clinical medicine Orthopedics and Sports Medicine Phosphorylation General Medicine Adaptation Physiological Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha medicine.anatomical_structure Type 1 diabetes Skeletal muscle signalling Female Signal Transduction Adult medicine.medical_specialty animal structures Exercise modalities 03 medical and health sciences Physiology (medical) Internal medicine medicine Humans RNA Messenger Muscle Skeletal Protein kinase B Exercise Myogenin Glycemic business.industry Blood Glucose Self-Monitoring fungi Public Health Environmental and Occupational Health Skeletal muscle Resistance Training 030229 sport sciences Metabolism Glucose variability medicine.disease Endocrinology Diabetes Mellitus Type 1 Glucose Hypoglycaemia business 030217 neurology & neurosurgery |
Zdroj: | European journal of applied physiology. 120(12) |
ISSN: | 1439-6327 |
Popis: | To compare the effect of high-intensity aerobic (AER), resistance (RES), and combined (COMB: RES + AER) exercise, on interstitial glucose (IG) variability and skeletal muscle signalling pathways in type 1 diabetes (T1D). T1D participants (6 M/6F) wore a flash glucose monitoring system in four randomized sessions: one control (CONT), and one AER, RES and COMB (40 min each). Mean amplitude of glycemic excursions (MAGE), standard deviation (SD) and coefficient variation (CV) of IG were used to compare the 24 h post-exercise IG variability. Blood and muscle samples were collected to compare exercise-induced systemic and muscle signalling responses related to metabolic, growth and inflammatory adaptations. Both RES and COMB decreased the 24 h MAGE compared to CONT; additionally, COMB decreased the 24 h SD and CV. In the 6–12 h post-exercise, all exercise modalities reduced the IG CV while SD decreased only after COMB. Both AER and COMB stimulated the PGC-1α mRNA expression and promoted the splicing of IGF-1Ea variant, while Akt and p38MAPK phosphorylation increased only after RES and COMB. Additionally, COMB enhanced eEF2 activation and RES increased myogenin and MRF4 mRNA expression. Blood lactate and glycerol levels and muscle IL-6, TNF-α, and MCP-1 mRNAs increased after all exercise sessions, while serum CK and LDH level did not change. COMB is more effective in reducing IG fluctuations compared to single-mode AER or RES exercise. Moreover, COMB simultaneously activates muscle signalling pathways involved in substrate metabolism and anabolic adaptations, which can help to improve glycaemic control and maintain muscle health in T1D. |
Databáze: | OpenAIRE |
Externí odkaz: |