Class groups of Kummer extensions via cup products in Galois cohomology

Autor: Eric Stubley, Karl Schaefer
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1806.00517
Popis: We use Galois cohomology to study the $p$-rank of the class group of $\mathbf{Q}(N^{1/p})$, where $N \equiv 1 \bmod{p}$ is prime. We prove a partial converse to a theorem of Calegari--Emerton, and provide a new explanation of the known counterexamples to the full converse of their result. In the case $p = 5$, we prove a complete characterization of the $5$-rank of the class group of $\mathbf{Q}(N^{1/5})$ in terms of whether or not $\prod_{k=1}^{(N-1)/2} k^{k}$ and $\frac{\sqrt{5} - 1}{2}$ are $5$th powers mod $N$.
Comment: 54 pages. This version has been accepted for publication in Transaction of the AMS
Databáze: OpenAIRE