Weak Néron models for cubic polynomial maps over a non-Archimedean field
Autor: | Jean Yves Briend, Liang Chung Hsia |
---|---|
Přispěvatelé: | Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), National Taiwan Normal University (NTNU), Laboratoire d'Analyse, Topologie, Probabilités (LATP), The second-named author’s research is supported by NSC-95-2115-M-008-003 of the National Science Concil of Taiwan., ANR-07-JCJC-0004,Berko,Espaces de Berkovich, geometrie et dynamique(2007), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU) |
Rok vydání: | 2012 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics - Number Theory repelling fixed points [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] 010102 general mathematics Julia set 37P05 11G05 14G20 37P20 Field (mathematics) Fixed point Primary: 11G99 Secondary: 11S82 14G20 37P05 01 natural sciences [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Combinatorics Mathematics - Algebraic Geometry weak Néron model 0103 physical sciences non-Archimedean dynamics [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] 010307 mathematical physics Mathematics - Dynamical Systems 0101 mathematics Cubic function Mathematics |
Zdroj: | Acta Arithmetica Acta Arithmetica, Instytut Matematyczny PAN, 2012, 153 (4), pp.415-428. ⟨10.4064/aa153-4-5⟩ Acta Arithmetica, 2012, 153 (4), pp.415-428. ⟨10.4064/aa153-4-5⟩ |
ISSN: | 1730-6264 0065-1036 |
Popis: | The aim of this note is to give an effective criterion to verify whether a cubic polynomial over a non-Archimedean field has a weak N\'{e}ron model or not. Comment: 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |