Comparison of discrete and full-waveform ALS for dead wood detection
Autor: | W. Mücke, M. Hollaus, N. Pfeifer, A. Schroiff, B. Deák |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
lcsh:Applied optics. Photonics
Correctness 010504 meteorology & atmospheric sciences Laser scanning lcsh:T 0211 other engineering and technologies Point cloud lcsh:TA1501-1820 Workload 02 engineering and technology 15. Life on land lcsh:Technology 01 natural sciences Lidar lcsh:TA1-2040 False positive paradox Environmental science Habitats Directive lcsh:Engineering (General). Civil engineering (General) Natura 2000 021101 geological & geomatics engineering 0105 earth and related environmental sciences Remote sensing |
Zdroj: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol II-5-W2, Pp 199-204 (2013) |
ISSN: | 2194-9050 |
Popis: | The amount of dead wood is a significant parameter for the description and assessment of forest habitat quality under the terms of the Habitats directive and Natura 2000 guidelines. EU member states are obliged by the Natura 2000 regulations to report on habitat quality in a regular interval of six years. To fulfil this task, the areas should be surveyed in the field, which requires an enormous amount of workload if done only by conventional field work. In this study the applicability of airborne laser scanning data as the single data source for the detection of downed trees in forest habitats is investigated. A focus is laid on the comparison of point clouds with only discrete (XYZ) and full-waveform (including echo width) information as input data. In our paper we present an automatic workflow which is able to detect downed trees with high completeness for both data sets (77.8% for discrete and 75.6% for full-waveform data). Due to large amount of false positives, the correctness using discrete ALS data is poorer (63.1%) than for full-waveform data (89.9%). It was found that the quality of the result is also influenced by factors such as dimension, state of decay, vegetation density and penetration of the foliage by the laser. |
Databáze: | OpenAIRE |
Externí odkaz: |