A Neural Adaptive Assisted Backstepping Controller for MPPT in Photovoltaic Applications

Autor: Samia Semcheddine, Gabriele Maria Lozito, Alberto Reatti, Fabio Corti, Okba Boutebba, Antonino Laudani
Přispěvatelé: aa. vv., Boutebba, O., Laudani, A., Lozito, G. M., Corti, F., Reatti, A., Semcheddine, S.
Rok vydání: 2020
Předmět:
Zdroj: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe).
DOI: 10.1109/eeeic/icpseurope49358.2020.9160518
Popis: Maximum power point tracking is a key asset to ensure an efficient energy conversion when a photovoltaic power source is involved. In this work, a novel approach combining a Neural-Network based tracking technique with an highly efficient algorithm for non-inverting buck-boost DC-DC converter (NIBB) control is proposed. The approach is validated through comparison against the well-known P&O algorithm, resulting superior both in terms of identifying the correct operating point for the PV device, and in terms of dynamic stability of the converter.
Databáze: OpenAIRE