EFFECTS OF 2-METHYL-2-THIAZOLINE ON CIRCULATORY DYNAMICS AND INTESTINAL VASCULAR SYSTEM IN RABBITS WITH ENDOTOXIC SHOCK

Autor: Atsunori Onoe, Takashi Muroya, Fumiko Nakamura, Hitoshi Ikegawa, Yasuyuki Kuwagata, Reiko Kobayakawa, Ko Kobayakawa
Rok vydání: 2022
Předmět:
Zdroj: Shock (Augusta, Ga.). 58(4)
ISSN: 1540-0514
Popis: We hypothesized that circulatory and jejunal mucosal blood flow would improve after 2-methyl-2thiazoline (2MT) administration in endotoxic shock. This study aimed to evaluate changes in systemic circulation and in superior mesenteric venous (SMV) blood flow and jejunal mucosal tissue blood flow of the intestinal vascular system over time after administration of 2MT in rabbits with endotoxic shock. We created four groups (n = 6 each): control group, LPS (1 mg/kg) group, 2MT (80 mg/kg) group, and LPS-2MT group. As indicators of circulation, we measured MAP, heart rate, cardiac index, lactic acid level, SMV blood flow, and jejunal mucosal tissue blood flow every 30 min from 0 to 240 min. The drop in MAP observed in the LPS group was suppressed by 2MT administration. Superior mesenteric venous blood flow dropped temporarily with LPS administration but then rose thereafter. After administration of 2MT to the LPS group, SMV blood flow began to rise earlier than that in the LPS group and did not decline below that of the control group thereafter. In the LPS group, jejunal mucosal tissue blood flow transiently decreased and then increased but at a lower level than that in the control group. However, in the LPS-2MT group, although a transient decrease in jejunal mucosal tissue blood flow was observed, its flow then improved to the level of the control group. An interaction between 2MT and LPS was observed for jejunal mucosal tissue blood flow from 90 to 180 min and at 240 min (Plt; 0.05). We showed that 2MT maintained MAP and improved SMV blood flow and jejunal mucosal tissue blood flow. In a rabbit model of endotoxic shock, 2MT had a positive effect on MAP and jejunal mucosal tissue blood flow.
Databáze: OpenAIRE