Fractional triangle decompositions of dense $3$-partite graphs
Autor: | Flora C. Bowditch, Peter J. Dukes |
---|---|
Rok vydání: | 2019 |
Předmět: |
Combinatorics
Degree (graph theory) 010201 computation theory & mathematics 010102 general mathematics FOS: Mathematics 05B15 05C70 Decomposition (computer science) Mathematics - Combinatorics Combinatorics (math.CO) 0102 computer and information sciences 0101 mathematics 01 natural sciences Mathematics |
Zdroj: | Journal of Combinatorics. 10:255-282 |
ISSN: | 2150-959X 2156-3527 |
DOI: | 10.4310/joc.2019.v10.n2.a5 |
Popis: | We compute a minimum degree threshold sufficient for 3-partite graphs to admit a fractional triangle decomposition. Together with recent work of Barber, K\"uhn, Lo, Osthus and Taylor, this leads to bounds for exact decompositions and in particular the completion problem for sparse partial latin squares. Some extensions are considered as well. |
Databáze: | OpenAIRE |
Externí odkaz: |