The Gromov Invariants of Ruan-Tian and Taubes

Autor: Thomas H. Parker, Eleny-Nicoleta Ionel
Jazyk: angličtina
Rok vydání: 1997
Předmět:
Popis: Taubes has recently defined Gromov invariants for symplectic four-manifolds and related them to the Seiberg-Witten invariants. Independently, Ruan and Tian defined symplectic invariants based on ideas of Witten. In this note, we show that Taubes' Gromov invariants are equal to certain combinations of Ruan-Tian invariants. This link allows us to generalize Taubes' invariants. For each closed symplectic four-manifold, we define a sequence of symplectic invariants $Gr_{\delta}$, $\delta=0,1,2,...$. The first of these, $Gr_0$, generates Taubes' invariants, which count embedded J-holomorphic curves. The new invariants $Gr_{\delta}$ count immersed curves with $\delta$ double points. In particular, these results give an independent proof that Taubes' invariants are well-defined. They also show that some of the Ruan-Tian symplectic invariants agree with the Seiberg-Witten invariants.
Comment: AMS-LaTeX, 11 pages
Databáze: OpenAIRE