A growing degree day inference model based on mountain birch leaf cuticle analysis over a latitudinal gradient in Fennoscandia
Autor: | Ercan, Fabian E.Z., De Boer, Hugo Jan, Wagner-Cremer, Friederike, Palaeo-ecologie, Environmental Sciences, Coastal dynamics, Fluvial systems and Global change |
---|---|
Přispěvatelé: | Palaeo-ecologie, Environmental Sciences, Coastal dynamics, Fluvial systems and Global change |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Archeology Betula nana 010504 meteorology & atmospheric sciences latitudinal gradient Growing season Climate change 01 natural sciences palaeoclimate inference model Botany medicine Betula growing degree days 0105 earth and related environmental sciences Earth-Surface Processes Global and Planetary Change biology Ecology seasonality Palaeontology Fennoscandia Paleontology Growing degree-day Seasonality medicine.disease biology.organism_classification climate change Plant cuticle Archaeology cuticle analysis 010606 plant biology & botany |
Zdroj: | Holocene, 30(1), 344. SAGE Publications Ltd |
ISSN: | 0959-6836 |
Popis: | Cuticle analysis performed on fossil Betula nana (L.) leaves provides a strong proxy to reconstruct past growing season thermal properties expressed as growing degree days (GDD5). This proxy is so far available for the dwarf birch only and, therewith, restricted to regions or past periods of subarctic climatic conditions. In this study, we analysed modern leaf samples of mountain birch ( Betula pubescens spp. czerepanovii (N. I. Orlova) Hämet-Ahti), which has a wider temperature range than the dwarf birch B. nana. The strong latitudinal climate gradient over Fennoscandia provides a unique opportunity to track growing season temperature imprints in the epidermis cell morphology of the modern mountain birch. We quantified the GDD5-dependent epidermal cell expansion, expressed as the undulation index (UI), over a 10° latitudinal transect translating to a range from ~1500°C to ~600°C GDD5 in 2016. Our results indicate that even in mountain birch the UI is positively correlated to GDD5 and, moreover, is largely independent of regional habitat conditions such as daylight length and precipitation. These results imply that in addition to the earlier studied (sub-)arctic dwarf birch, the closely related mountain birch can also be utilized in GDD5 reconstructions. The abundant presence of fossil mountain birch leaves in sediments from warmer than (sub)arctic palaeoclimates enables the reconstruction of growing season climate dynamics over past phases of climate change, overcoming earlier restrictions of the proxy related to spatial and temporal species occurrence as well as local light regimes. |
Databáze: | OpenAIRE |
Externí odkaz: |