Melt Memory Effect in Polyethylene Random Terpolymer with Small Amount of 1-Octene and 1-Hexene Co-Units: Non-Isothermal and Isothermal Investigations

Autor: Dengfei Wang, Shiyan Li, Ying Lu, Jian Wang, Yongfeng Men
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Polymers; Volume 15; Issue 7; Pages: 1721
ISSN: 2073-4360
DOI: 10.3390/polym15071721
Popis: Homo-polymers of reasonable molecular weight relax very fast in the molten state. Starting from a semi-crystalline structure, when the homo-polymer is heated up to a temperature higher than its nominal melting temperature, it relaxes quickly into a homogenous molten state. The following crystallization temperature during cooling remains constant irrespective of the melt temperature. However, the situation is evidently different in copolymers. A phenomenon named the crystallization melt memory effect denotes an increased crystallization rate during cooling after a polymer was melted at different temperatures, which is often observed. The melt temperature can be even higher than the equilibrium melting temperature of the corresponding polymer crystals. In this work, we investigated such memory effect in a polyethylene random terpolymer with a small fraction of 1-octene and 1-hexene co-units using differential scanning calorimetry techniques. Both non-isothermal and isothermal protocols were employed. In non-isothermal tests, a purposely prepared sample with well defined thermal history (the sample has been first conditioned at 200 °C for 5 min to eliminate the thermal history and then cooled down to −50 °C) was melted at different temperatures, followed by a continuous cooling at a constant rate of 20 °C/min. Peak crystallization temperature during cooling was taken to represent the crystallization rate. Whereas, in isothermal tests, the same prepared sample with well defined thermal history was cooled to a certain crystallization temperature after being melted at different temperatures. Here, time to complete the isothermal crystallization was recorded. It was found that the results of isothermal tests allowed us to divide the melt temperature into four zones where the features of the crystallization half time change.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje