Reproducing of the humidity curve of power transformers oil using adaptive neuro-fuzzy systems

Autor: V.V. Vasilevskij, M.O. Poliakov
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Electrical Engineering & Electromechanics; No. 1 (2021); 10-14
Электротехника и Электромеханика; № 1 (2021); 10-14
Електротехніка і Електромеханіка; № 1 (2021); 10-14
Electrical engineering & Electromechanics, Iss 1, Pp 10-14 (2021)
ISSN: 2309-3404
2074-272X
Popis: Introduction. One of the parameters that determine the state of the insulation of power transformers is the degree of moisture content of cellulose insulation and transformer oil. Modern systems of continuous monitoring of transformer equipment have the ability to accumulate data that can be used to reproduce the dynamics of moisture content in insulation. The purpose of the work is to reproduce the curve of the of humidity of transformer oil based on the results of measuring the temperature of the upper and lower layers of oil without the need for direct measurement of moisture content by special devices. Methodology. The construction of a fuzzy neural network is carried out using networks based on adaptive neuro-fuzzy system ANFIS. The network generated using the Grid Partition algorithm without clustering and Subtractive Clustering. Results. The paper presents a comparative analysis of fuzzy neural networks of various architectures in terms of increasing the accuracy of reproducing the moisture content of transformer oil. For training and testing fuzzy neural networks, the results of continuous monitoring of the temperature of the upper and lower layers of transformer oil during two months of operation used. Considered twenty four variants of the architecture of ANFIS models, which differ in the membership functions, the number of terms of each input quantity, and the number of training cycles. The results of using the constructed fuzzy neural networks for reproducing the dynamics of moisture content of transformer oil during a month of operation of the transformer are presented. The reproducing accuracy was assessed using the root mean square error and the coefficient of determination. The test results indicate the sufficient adequacy of the proposed models. Consequently, the RMSE value for the network constructed using Grid Partition method was 0.49, and for the network built using the Subtractive Clustering method – 0.40509.
Вступ. Одним з параметрів, що визначають стан ізоляції силових трансформаторів, є ступінь вологості целюлозної ізоляції та трансформаторного масла. Сучасні системи неперервного контролю трансформаторного обладнання мають можливість накопичувати дані, які можуть бути використані для відтворювання динаміки вологості ізоляції при зміненні теплового режиму трансформатора. Метою роботи є відтворення кривої вологості трансформаторного масла за результатами вимірювання температури верхніх і нижніх шарів масла без необхідності прямого вимірювання вологовмісту спеціальними пристроями. Методологія. Побудова нечіткої нейронної мережі здійснюється із використанням адаптивних нейро-нечітких систем виводу ANFIS. Генерування моделі виконано за методами Grid Partition та Subtractive Clustering. Результати. Наведено порівняльний аналіз моделей ANFIS різної архітектури з точки зору підвищення точності відтворення кривої вологовмісту трансформаторного масла за результатами контролю температури його верхніх та нижніх шарів. При навчанні та тестуванні моделей ANFIS використовувались результати неперервного контролю трансформаторного масла протягом двох місяців експлуатації. Розглянуто двадцять чотири варіанти архітектури моделей ANFIS, які відрізняються функціями приналежності, кількістю термів кожної вхідної величини та кількістю циклів навчання. Представлені результати використання побудованих моделей ANFIS для відтворення кривої динаміки вологості масла протягом місяця експлуатації трансформатора. Точність відтворення кривої вологості масла оцінювалась шляхом розрахунку кореневої середньоквадратичної помилки та коефіцієнта детермінації. Результати тестувань свідчать про достатню адекватність запропонованих моделей. Значення кореневої середньоквадратичної помилки для моделі, побудованої із використанням методу Grid Partition, становило 0,49, а для моделі, побудованої з використанням методу Subtractive Clustering – 0,40509.
Databáze: OpenAIRE