Total and leached arsenic, mercury and antimony in the mining waste dumping area of abbadia san salvatore (Mt. amiata, central Italy)

Autor: Meloni F.[1], Montegrossi G.[1, Lazzaroni M.[1, 2, Rappuoli D.[4, Nisi B.[1, Vaselli O.[1
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Applied sciences 11 (2021): 1–19. doi:10.3390/app11177893
info:cnr-pdr/source/autori:Meloni F.[1], Montegrossi G.[1,2], Lazzaroni M.[1,2,3], Rappuoli D.[4,5], Nisi B.[1,2], Vaselli O.[1,2,3]/titolo:Total and leached arsenic, mercury and antimony in the mining waste dumping area of abbadia san salvatore (Mt. amiata, central Italy)/doi:10.3390%2Fapp11177893/rivista:Applied sciences/anno:2021/pagina_da:1/pagina_a:19/intervallo_pagine:1–19/volume:11
Applied Sciences, Vol 11, Iss 7893, p 7893 (2021)
Applied Sciences
Volume 11
Issue 17
Popis: Total and leached Arsenic, Mercury and Antimony were determined in the topsoils developed on the mining waste dumping area of Le Lame (Mt. Amiata, central Italy) where the post-processing Hg-rich ore deposits from the mining area of Abbadia San Salvatore were stored. The concentrations of As, Hg and Sb were up to 610, 1910 and 1610 mg kg−1, respectively, while those in the leachates (carried out with CO2-saturated MilliQ water to simulate the meteoric water conditions) were up to 102, 7 and 661 μg·L−1, respectively. Most aqueous solutions were characterized by Hg content <
0.1 μg·L−1. This is likely suggesting that the mine wastes (locally named “rosticci”) were possibly resulting from an efficient roasting process that favored either the removal or inertization of Hg operated by the Gould furnaces and located in the southern sector of Le Lame. The highest values of total and leachate mercury were indeed mostly found in the northern portion where the “rosticci”, derived by the less efficient and older Spirek-Cermak furnaces, was accumulated. The saturation index was positive for the great majority of leachate samples in Fe-oxy-hydroxides, e.g., ferrihydrite, hematite, magnetite, goethite, and Al-hydroxides (boehmite and gibbsite). On the other hand, As- and Hg-compounds were shown to be systematically undersaturated, whereas oversaturation in tripuhyte (FeSbO4) and romeite (Ca2Sb2O7) was evidenced. The Eh-pH diagrams for the three chalcophile elements were also constructed and computed and updated according to the recent literature data.
Databáze: OpenAIRE