The effect of blue light on periodontal biofilm growth in vitro
Autor: | Xiaoqing Song, Angeliki Polymeri, Xiaoshan Wang, Nikolaos S. Soukos, Carla Raquel Fontana, J. Max Goodson |
---|---|
Rok vydání: | 2015 |
Předmět: |
Periodontium
Porphyrins Light Colony Count Microbial Dental Plaque Dermatology Dental plaque Prevotella melaninogenica Microbiology Prevotella nigrescens stomatognathic system medicine Humans Chromatography High Pressure Liquid Microbial Viability biology Prevotella intermedia Biofilm Fusobacterium Phototherapy biology.organism_classification medicine.disease stomatognathic diseases Biofilms Surgery Fusobacterium nucleatum Bacteria |
Zdroj: | Lasers in Medical Science. 30:2077-2086 |
ISSN: | 1435-604X 0268-8921 |
DOI: | 10.1007/s10103-015-1724-7 |
Popis: | We have previously shown that blue light eliminates the black-pigmented oral bacteria Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, and Prevotella melaninogenica. In the present study, the in vitro photosensitivity of the above black-pigmented microorganisms and four Fusobacteria species (Fusobacterium nucleatum ss. nucleatum, F. nucleatum ss. vincentii, F. nucleatum ss. polymorphum, Fusobacterium periodonticum) was investigated in pure cultures and human dental plaque suspensions. We also tested the hypothesis that phototargeting the above eight key periodontopathogens in plaque-derived biofilms in vitro would control growth within the dental biofilm environment. Cultures of the eight bacteria were exposed to blue light at 455 nm with power density of 80 mW/cm2 and energy fluence of 4.8 J/cm2. High-performance liquid chromatography (HPLC) analysis of bacteria was performed to demonstrate the presence and amounts of porphyrin molecules within microorganisms. Suspensions of human dental plaque bacteria were also exposed once to blue light at 455 nm with power density of 50 mW/cm2 and energy fluence of 12 J/cm2. Microbial biofilms developed from the same plaque were exposed to 455 nm blue light at 50 mW/cm2 once daily for 4 min (12 J/cm2) over a period of 3 days (4 exposures) in order to investigate the cumulative action of phototherapy on the eight photosensitive pathogens as well as on biofilm growth. Bacterial growth was evaluated using the colony-forming unit (CFU) assay. The selective phototargeting of pathogens was studied using whole genomic probes in the checkerboard DNA-DNA format. In cultures, all eight species showed significant growth reduction (p |
Databáze: | OpenAIRE |
Externí odkaz: |