Evaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with Cohort Analyzer

Autor: Pedro Seoane-Zonjic, Álvaro Parés-Aguilar, Belén Pérez, Elena Rojano, Fernando M. Jabato, Mercedes Serrano, James R. Perkins, José Córdoba-Caballero, Juan A. G. Ranea, D. Gallego
Přispěvatelé: [Rojano,E, Córdoba-Caballero,J, Parés-Aguilar,Á, Perkins,JR, Ranea,JAG, Seoane-Zonjic,P] Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Spain. [Rojano,E, Jabato,FM, Seoane-Zonjic,P] Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain. [Jabato,FM] Supercomputation and Bioinformatics (SCBI), University of Malaga, Malaga, Spain. [Jabato,FM] LifeWatch-ERIC, Seville, Spain. [Gallego,D, Serrano,M, Pérez,B, Seoane-Zonjic,P] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, Madrid, Spain. [Gallego,D, Pérez,B] Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain. [Gallego,D, Pérez,B] Instituto de Investigación Sanitaria idiPAZ, Madrid, Spain. [Serrano,M] Neuropediatric Department, Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain., This work was supported by The Spanish Ministry of Economy and Competitiveness with European Regional Development Fund [PID2019-108096RB-C21], the Andalusian Government with European Regional Development Fund [UMA18-FEDERJA-102 and PAIDI 2020:PY20-00372], biomedicine research project [PI-0075-2017] (Fundación Progreso y Salud), the Carlos III Health Institute [PI19/01155], the Madrid Government [B2017/BMD-3721], the Ramón Areces foundation for rare disease investigation (National call for research on life and material sciences, XIX edition). We thank the patients and patients’ families for their collaboration and consent. PMM2-CDG research is supported by national grants from the National Plan on I+D+I, cofinanced by ISCIII (Subdirección General de Evaluación y Fomento de la Investigación Sanitaria) and FEDER (Fondo Europeo de Desarrollo Regional) [PI14/00021, PI17/00101 ]. Dr. Serrano’s research work is supported by a grant from the Generalitat de Catalunya [PERIS SLT008/18/00194]. The CIBERER is an initiative from the Carlos III Health Institute (Instituto de Salud Carlos III)., Ministerio de Economía y Competitividad (España), Junta de Andalucía, Instituto de Salud Carlos III, Comunidad de Madrid, Fundación Ramón Areces, Generalitat de Catalunya, Centro de Investigación Biomédica en Red Enfermedades Raras (España)
Rok vydání: 2021
Předmět:
0301 basic medicine
Phenomena and Processes::Genetic Phenomena::Phenotype [Medical Subject Headings]
Ontología de genes
Genomic data
Análisis por grupos
Medicine (miscellaneous)
Computational biology
Disease
Phenotype quality assessment
Biology
Analytical
Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Cluster Analysis [Medical Subject Headings]

Cohort analyzer
Article
Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans [Medical Subject Headings]
03 medical and health sciences
Cluster analysis
0302 clinical medicine
Human Phenotype Ontology
Garantía de la calidad de atención de salud
Information Science::Information Science::Systems Analysis::Workflow [Medical Subject Headings]
Enfermedades genéticas congénitas
business.industry
Human phenotype ontology
030104 developmental biology
Cohort
Medicine
Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biology::Genetics::Genomics [Medical Subject Headings]
Personalized medicine
business
Fenotipo
030217 neurology & neurosurgery
Genetic diseases
Zdroj: Journal of Personalized Medicine
Journal of Personalized Medicine, Vol 11, Iss 730, p 730 (2021)
Volume 11
Issue 8
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 2075-4426
DOI: 10.3390/jpm11080730
Popis: Exhaustive and comprehensive analysis of pathological traits is essential to understanding genetic diseases, performing precise diagnosis and prescribing personalized treatments. It is particularly important for disease cohorts, as thoroughly detailed phenotypic profiles allow patients to be compared and contrasted. However, many disease cohorts contain patients that have been ascribed low numbers of very general and relatively uninformative phenotypes. We present Cohort Analyzer, a tool that measures the phenotyping quality of patient cohorts. It calculates multiple statistics to give a general overview of the cohort status in terms of the depth and breadth of phenotyping, allowing us to detect less well-phenotyped patients for re-examining or excluding from further analyses. In addition, it performs clustering analysis to find subgroups of patients that share similar phenotypic profiles. We used it to analyse three cohorts of genetic diseases patients with very different properties. We found that cohorts with the most specific and complete phenotypic characterization give more potential insights into the disease than those that were less deeply characterised by forming more informative clusters. For two of the cohorts, we also analysed genomic data related to the patients, and linked the genomic data to the patient-subgroups by mapping shared variants to genes and functions. The work highlights the need for improved phenotyping in this era of personalized medicine. The tool itself is freely available alongside a workflow to allow the analyses shown in this work to be applied to other datasets.
The Spanish Ministry of Economy and Competitiveness with European Regional Development Fund [PID2019-108096RB-C21]; the Andalusian Government with European Regional Development Fund [UMA18-FEDERJA-102 and PAIDI 2020:PY20-00372]; biomedicine research project [PI-0075-2017] (Fundación Progreso y Salud); the Carlos III Health Institute [PI19/01155]; the Madrid Government [B2017/BMD-3721]; the Ramón Areces and foundation Generalitat de Catalunya [PERIS LT008/18/00194]. The CIBERER is an initiative from the Carlos III Health Institute (Instituto de Salud Carlos III)
Databáze: OpenAIRE