Out-of-plane seismic response and failure mechanism of masonry structures using finite elements with enhanced strain accuracy

Autor: Georgios Vlachakis, Savvas Saloustros, G. B. Barbat, Miguel Cervera
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria, Universitat Politècnica de Catalunya. ATEM - Anàlisi i Tecnologia d'Estructures i Materials
Rok vydání: 2019
Předmět:
Cracking
Estructures de murs -- Sismologia
Engineering
Civil

Masonry--Earthquake effects
Dependency (UML)
Computer science
Engineering
Multidisciplinary

Enginyeria civil::Materials i estructures [Àrees temàtiques de la UPC]
020101 civil engineering
02 engineering and technology
Displacement (vector)
0201 civil engineering
0203 mechanical engineering
Masonry Structures
medicine
General Materials Science
Engineering
Ocean

Enginyeria civil::Geotècnia::Sismologia [Àrees temàtiques de la UPC]
Engineering
Aerospace

Engineering
Biomedical

Brick
business.industry
Numerical analysis
General Engineering
Stiffness
Structural engineering
Masonry
Computer Science
Software Engineering

Mixed Finite El-ements
Engineering
Marine

Finite element method
Engineering
Manufacturing

Engineering
Mechanical

Out-of-plane loading
020303 mechanical engineering & transports
Engineering
Industrial

Unreinforced masonry building
medicine.symptom
business
Pushover analysis
Zdroj: Scipedia Open Access
Scipedia SL
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 1350-6307
DOI: 10.1016/j.engfailanal.2019.01.017
Popis: The out-of-plane response is a complex and at the same time key aspect of the seismic vulnerability of masonry structures. It depends on several factors, some of which are the material properties, the quality of the walls, the geometry of the structure, the connections between structural elements and the stiffness of the diaphragms. During the last years, a wide variety of numerical methods has been employed to assess the out-of-plane behaviour of unreinforced masonry structures. Finite element macro-modelling approaches are among the most famous as they allow modelling large structures at a reasonable computational cost. However, macro-modelling approaches may result in a non-realistic representation of localized cracks and a dependency of the numerical solution on the finite element mesh. Mixed strain/displacement finite elements have been recently proposed as a remedy to the above nu-merical pathologies. Due to the independent interpolation of strains and displacements these finite element formulations are characterized by an enhanced accuracy in strain localization and crack propagation problems, being at the same time practically mesh independent. For these reasons, mixed finite elements are employed in this work for the out-of-plane assessment of unreinforced masonry struc-tures, being at the same time their first real-scale application. A full-scale experimental campaign of two masonry structures, a stone and a brick one, subjected to shaking-table tests is chosen as reference benchmark. Their structural response under seismic actions is numerically assessed through nonlinear static analysis. The proposed approach is validated through the comparison of the numerical results with the experimental ones, as well as with the results obtained using standard irreducible finite ele-ments.
Databáze: OpenAIRE