L$^2$ well-posedness of boundary value problems for parabolic systems with measurable coefficients

Autor: Pascal Auscher, Kaj Nyström, Moritz Egert
Přispěvatelé: Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 (LAMFA), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics [Uppsala], Uppsala University, Mathematical Research Science Institute, ANR-12-BS01-0013,HAB,Aux frontières de l'analyse Harmonique(2012), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Dirichlet and Neumann problems
General Mathematics
Mathematics::Analysis of PDEs
[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]
half-order derivative
Dirac operator
parabolic Kato square root estimate
01 natural sciences
parabolic Dirac operator
symbols.namesake
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
Order (group theory)
(non-tangential) maximal functions
Boundary value problem
0101 mathematics
Mathematics
2010 MSC: Primary: 35K40
35K46
42B37. Secondary: 26A33
42B25
47A60
47D06

Applied Mathematics
010102 general mathematics
Mathematical analysis
Second order parabolic systems
boundary layer operators
First order
Primary: 35K40
35K46
42B37. Secondary: 26A33
42B25
47A60
47D06

square function estimates
010101 applied mathematics
Mathematics - Classical Analysis and ODEs
a priori representations
symbols
Well posedness
Zdroj: J. Eur. Math. Soc. (JEMS) 6
J. Eur. Math. Soc. (JEMS) 6, 2020, 22 (9), pp.2943--3058
Journal of the European Mathematical Society
Journal of the European Mathematical Society, European Mathematical Society, 2020, 22 (9), pp.2943-3058. ⟨10.4171/JEMS/980⟩
ISSN: 1435-9855
1435-9863
DOI: 10.4171/jems/980
Popis: We prove the first positive results concerning boundary value problems in the upper half-space of second order parabolic systems only assuming measurability and some transversal regularity in the coefficients of the elliptic part. To do so, we introduce and develop a first order strategy by means of a parabolic Dirac operator at the boundary to obtain, in particular, Green's representation for solutions in natural classes involving square functions and non-tangential maximal functions, well-posedness results with data in $L^2$-Sobolev spaces together with invertibility of layer potentials, and perturbation results. In the way, we solve the Kato square root problem for parabolic operators with coefficients of the elliptic part depending measurably on all variables. The major new challenge, compared to the earlier results by one of us under time and transversally independence of the coefficients, is to handle non-local half-order derivatives in time which are unavoidable in our situation.
Comment: Upload of the published version
Databáze: OpenAIRE