An Extension Theorem for Weighted Ricci Curvature on Finsler Manifolds
Autor: | Yasemin Soylu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Basic Sciences Temel Bilimler General Medicine Extension (predicate logic) distance function Mathematics::Geometric Topology weighted ricci curvature lcsh:TA1-2040 Distance function Finsler manifold Weighted Ricci curvature Mathematics::Metric Geometry lcsh:Q Finsler manifold Mathematics::Differential Geometry finsler manifold lcsh:Engineering (General). Civil engineering (General) lcsh:Science lcsh:Science (General) Mathematics::Symplectic Geometry Ricci curvature Mathematics lcsh:Q1-390 |
Zdroj: | Cumhuriyet Science Journal, Vol 40, Iss 4, Pp 867-874 (2019) Volume: 40, Issue: 4 867-874 Cumhuriyet Science Journal |
ISSN: | 2587-2680 2587-246X |
Popis: | Let (M,F) be a forward complete and connected Finsler manifold of dimensional n ≥2 . In this study, we extend Wan’s extension theorem in Riemannian manifolds to Finsler manifolds by using the weighted Ricci curvature RicN bounded below. The proof of theorem is obtained by the Laplacian comparison theorem on Finsler manifolds and the excess function. |
Databáze: | OpenAIRE |
Externí odkaz: |