Industrial process monitoring by means of recurrent neural networks and Self Organizing Maps

Autor: Jesus A. Carino, Enric Sala, M. Delgado, Juan Antonio Ortega, Daniel Zurita
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. MCIA - Motion Control and Industrial Applications Research Group
Rok vydání: 2016
Předmět:
Self-organizing map
Artificial intelligence
Engineering
Informàtica::Automàtica i control [Àrees temàtiques de la UPC]
Process (engineering)
condition monitoring
Reliability (computer networking)
knowledge extraction
production engineering computing
02 engineering and technology
computer.software_genre
Machine learning
self-organizing map
copper rod industrial plant
process monitoring
industrial manufacturing plant
Knowledge extraction
recurrent neural nets
Machinery--Monitoring
0202 electrical engineering
electronic engineering
information engineering

self-organising feature maps
Maquinària -- Monitoratge
day-to-day operation
Operating point
business.industry
critical industrial signal time-series forecasting
Intel·ligència artificial
020208 electrical & electronic engineering
Condition monitoring
productive process
Knowledge acquisition
industrial condition monitoring approach
knowledge acquisition
operating point codification
Recurrent neural network
reliability problem
internal dynamics
critical signal modeling
recurrent neural network
020201 artificial intelligence & image processing
Data mining
industrial process monitoring
Informàtica::Robòtica [Àrees temàtiques de la UPC]
business
computer
Zdroj: ETFA
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
DOI: 10.1109/etfa.2016.7733534
Popis: Industrial manufacturing plants often suffer from reliability problems during their day-to-day operations which have the potential for causing a great impact on the effectiveness and performance of the overall process and the sub-processes involved. Time-series forecasting of critical industrial signals presents itself as a way to reduce this impact by extracting knowledge regarding the internal dynamics of the process and advice any process deviations before it affects the productive process. In this paper, a novel industrial condition monitoring approach based on the combination of Self Organizing Maps for operating point codification and Recurrent Neural Networks for critical signal modeling is proposed. The combination of both methods presents a strong synergy, the information of the operating condition given by the interpretation of the maps helps the model to improve generalization, one of the drawbacks of recurrent networks, while assuring high accuracy and precision rates. Finally, the complete methodology, in terms of performance and effectiveness is validated experimentally with real data from a copper rod industrial plant.
Databáze: OpenAIRE