Capillary Zone Electrophoresis-Top-Down Tandem Mass Spectrometry for In-Depth Characterization of Hemoglobin Proteoforms in Clinical and Veterinary Samples

Autor: Jennifer Römer, Ylva Hedeland, Hervé Cottet, Liesa Salzer, Christian Neusüß, Alexander Stolz, Laurent Leclercq, Jonas Bergquist, Reidun Heiene
Přispěvatelé: Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Université de Montpellier (UM), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Uppsala University
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Analytical Chemistry
Analytical Chemistry, American Chemical Society, In press, ⟨10.1021/acs.analchem.0c01350⟩
Analytical Chemistry, American Chemical Society, 2020, 92 (15), pp.10531-10539. ⟨10.1021/acs.analchem.0c01350⟩
ISSN: 0003-2700
1520-6882
DOI: 10.1021/acs.analchem.0c01350⟩
Popis: Hemoglobin (Hb) constitutes an important protein in clinical diagnostics-both in humans and animals. Among the high number of sequence variants, some can cause severe diseases. Moreover, chemical modifications such as glycation and carbamylation serve as important biomarkers for conditions such as diabetes and kidney diseases. In clinical routine analysis of glycated Hb, sequence variants or other Hb proteoforms can cause interference, resulting in wrong quantification results. We present a versatile and flexible capillary zone electrophoresis-mass spectrometry screening method for Hb proteoforms including sequence variants and modified species extracted from dried blood spot (DBS) samples with virtually no sample preparation. High separation power was achieved by application of a 5-layers successive multiple ionic polymer layers-coated capillary, enabling separation of positional isomers of glycated α- and β-chains on the intact level. Quantification of glycated Hb was in good correlation with the results obtained in a clinical routine method. Identification and characterization of known and unknown proteoforms was performed by fragmentation of intact precursor ions. N-Terminal and lysine glycation could be identified on the α- and β-chain, respectively. The versatility of the method was demonstrated by application to dog and cat DBS samples. We discovered a putative new sequence variant of the β-chain in dog (T38 → A). The presented method enables separation, characterization, and quantification of intact proteoforms, including positional isomers of glycated species in a single run. Combined with the simple sample preparation, our method represents a valuable tool to be used for deeper characterization of clinical and veterinary samples.
Databáze: OpenAIRE