Variational approximations for stochastic dynamics on graphs

Autor: Marco Pretti, Alessandro Pelizzola
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: BIFI International Conference 2018-Complexity, networks and collective behaviour, Zaragoza, Spain, 6-8/2/2018
info:cnr-pdr/source/autori:Marco Pretti (1), Alessandro Pelizzola (2)/congresso_nome:BIFI International Conference 2018-Complexity, networks and collective behaviour/congresso_luogo:Zaragoza, Spain/congresso_data:6-8%2F2%2F2018/anno:2018/pagina_da:/pagina_a:/intervallo_pagine
Journal of statistical mechanics 2017 (2017). doi:10.1088/1742-5468/aa7a40
info:cnr-pdr/source/autori:Pelizzola A.; Pretti M./titolo:Variational approximations for stochastic dynamics on graphs/doi:10.1088%2F1742-5468%2Faa7a40/rivista:Journal of statistical mechanics/anno:2017/pagina_da:/pagina_a:/intervallo_pagine:/volume:2017
DOI: 10.1088/1742-5468/aa7a40
Popis: We investigate different mean-field-like approximations for stochastic dynamics on graphs, within the framework of a cluster-variational approach. In analogy with its equilibrium counterpart, this approach allows one to give a unified view of various (previously known) approximation schemes, and suggests quite a systematic way to improve the level of accuracy. We compare the different approximations with Monte Carlo simulations on a reversible (susceptible-infected-susceptible) discrete-time epidemic-spreading model on random graphs.
29 pages, 5 figures. Minor revisions. IOP-styled
Databáze: OpenAIRE