Autor: |
Hussein, Hanaa Ali, Desy Fitrya Syamsumir, Siti Aisha Mohd Radzi, Siong, Julius Yong Fu, Nor Atikah Mohamed Zin, Abdullah, Mohd Azmuddin |
Rok vydání: |
2020 |
DOI: |
10.6084/m9.figshare.12660964.v1 |
Popis: |
Additional file 1. Table S1. Composition of TMRL Enrichment Medium for cultivation of microalgae (AQUACOPs 1984). Table S2. Preparation of AgNPs-MCEs co-application ratio for antimicrobial activity (500 µg/mL). Table S3. The HPTLC parameters of MCEs-CHL for Retention factor (Rf), Area (%) under the curve and Area of Standards (EPA and β-Carotene). Table S4. The HPTLC parameters of MCEs-HEX for Retention factor (Rf), Area (%) under the curve and Area of Standards (EPA and β-Carotene). Table S5. The HPTLC parameters of MCEs-ETH for Retention factor (Rf), Area (%) under the curve and Area of Standards (EPA and β-Carotene). Table S6. Inhibitory effects (mm) of AgNPs and MCEs (500 µg/mL) single application and standard antibiotic penicillin on selected microorganisms for 24 h by using well diffusion methods. The results are expressed as the Means ± SD of three replicates. Table S7. Inhibitory effects (mm) of AgNPs and MCEs (500 µg/mL) co-application at the 1.5:1 and 2:1 ratios on selected microorganisms for 24 h by using well diffusion methods. The results are expressed as the Means ± SD of three replicates. Table S8. Minimum inhibitory concentration (MIC, µg/mL) of MCEs and AgNPs single application by using the microtiter plate dilution method. Table S9. Minimum inhibitory concentration (MIC, µg/mL) of AgNPs and MCEs co-application at the 1.5:1 and 2:1 ratios by using the microtiter plate dilution method. Figure S1. Dimensional finger print of the MCEs showing different peaks of phytoconstituents for (a) CHL: (b) HEX; (c) ETH. The identification of β-carotene and EPA in the standards and the MCEs was based on the retention factor (Rf) value as determined by Win CATS software. Figure S2. HPTLC chromatogram of MCEs-CHL extract showing different peaks of phytoconstituents for (a) EPA; (b) β-carotene; (c) N. oculata; (d) T. suecica; (e) Chlorella sp. The identification of β-carotene and EPA in the standards and the MCEs was based on the retention factor (Rf) value as determined by Win CATS software. Figure S3. HPTLC chromatogram of MCEs-HEX extracts showing different peaks of phytoconstituents for (a) EPA; (b) β-carotene; (c) N. oculata; (d) T. suecica; (e) Chlorella sp. The identification of β-carotene and EPA in the standards and the MCEs was based on the retention factor (Rf) value as determined by Win CATS software. Figure S4. HPTLC chromatogram of MCEs-ETH extracts showing different peaks of phytoconstituents for (a) EPA; (b) β-carotene; (c) N. oculata; (d) T. suecica; (e) Chlorella sp. The identification of β-carotene and EPA in the standards and the MCEs was based on the retention factor (Rf) value as determined by Win CATS software. Figure S5. Anti-microbial activity of MCEs and AgNPs single and co-application (1.5:1) against B. subtilis for (a) N. oculata-MET; (b) N. oculata-CHL; (c) N. oculata-ETH; (d) T. suecica-CHL; (e) T. suecica-ETH; (f) Chlorella sp.-ETH; (g) AgNPs; (h) Penicillin; (i) AgNPs-N. oculata-MET; (j) AgNPs-N. oculata-CHL; (k) AgNPs-T. suecica-MET; (l) AgNPs-T. suecica-CHL; (m) AgNPs-Chlorella sp.-MET; (n) AgNPs-Chlorella sp.-CHL. Figure S6. Anti-microbial activity of MCEs and AgNPs single and co-application (1.5:1) against S. uberis for (a) N. oculata-MET; (b) N. oculata-CHL; (c) N. oculata-ETH; (d) T. suecica-ETH; (e) Chlorella sp.-CHL; (f) AgNPs; (g) Penicillin; (h) AgNPs-N. oculata-MET; (i) AgNPs-N. oculata-CHL; (j) AgNPs-T. suecica-MET; (k) AgNPs-T. suecica-CHL; (l) AgNPs-Chlorella sp.-MET; (m) AgNPs-Chlorella sp.-CHL. Figure S7. Anti-microbial activity of MCEs and AgNPs single and co-application (1.5:1) against Salmonella sp. for (a) N. oculata-MET; (b) N. oculata-CHL; (c) N. oculata-ETH; (d) T. suecica-ETH; (e) Chlorella sp.-MET; (f) Chlorella sp.-CHL; (g) Chlorella sp.-ETH; (h) AgNPs; (i) Penicillin; (j) AgNPs-N. oculata-MET; (k) AgNPs-N. oculata-CHL; (l) AgNPs-T. suecica-MET; (m) AgNPs-T. suecica-CHL; (n) AgNPs-Chlorella sp.-MET; (o) AgNPs-Chlorella sp.-CHL. Figure S8. Anti-microbial activity of MCEs and AgNPs single and co-application (1.5:1) against K. pneumoniae. for (a) N. oculata-CHL; (b) N. oculata-ETH; (c) T. suecica-MET; (d) T. suecica-CHL; (e) Chlorella sp.-MET; (f) Chlorella sp.-CHL; (g) AgNPs; (h) Penicillin; (i) AgNPs-N. oculata-MET; (j) AgNPs-N. oculata-CHL; (k) AgNPs-T. suecica-MET; (l) AgNPs-T. suecica-CHL; (m) AgNPs-Chlorella sp.-MET; (n) AgNPs-Chlorella sp.-CHL. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|