PM10 Resuspension of Road Dust in Different Types of Parking Lots: Emissions, Chemical Characterisation and Ecotoxicity

Autor: Ismael Casotti Rienda, Célia A. Alves, Teresa Nunes, Marlene Soares, Fulvio Amato, Ana Sánchez de la Campa, Nóra Kováts, Katalin Hubai, Gábor Teke
Přispěvatelé: Ministerio de Ciencia e Innovación (España)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Atmosphere
Volume 14
Issue 2
Pages: 305
ISSN: 2073-4433
DOI: 10.3390/atmos14020305
Popis: The thoracic fraction of road dust (PM10) was measured for the first time in Portugal in parking areas, both outdoors and indoors, with the aim of completing existing studies carried out in active lanes of various roads. An in situ resuspension chamber was used to collect a total of 23 samples in three parking areas of Aveiro, whilst the laboratory procedures included determination of carbonaceous content (OC and EC) by a thermo-optical technique, elemental composition by ICP-MS and ICP-OES after acid digestion, and the Aliivribrio fisherii bioluminescent bacteria ecotoxicity bioassay. Dust loadings (DL10) obtained were 18.5 ± 9.8 mg PM10 m−2, in outdoor parking, and 1.8–23.7 mg PM10 m−2 for indoor parking, corresponding to emission factors of 476 and 75–589 mg veh−1 km−1, respectively. OC represented 9–30 % of PM10 for the indoor parking areas. However, for the outdoor samples, the high iron oxide content jeopardised the OC-EC separation. In those samples, carbonates accounted for 10.0 ± 3.3% of the PM10 mass. The analysis of elemental components focused on major elements (Al, Ca, Fe, K, and Mg) as well as minor elements. The total mass fraction of element oxides accounted for 27.1% (outdoor) and 23.6–34.3% (indoor). ΣPAH calculated for all parking areas accounted for 8.38–36.9 μg g−1 PM10. The ecotoxicological bioassay showed that all aqueous solutions were toxic to bioluminescent bacteria, whereas no clear correlations could be made with specific component groups, with the exception of ΣPAH and EC50.
This research was funded by FEDER, through COMPETE2020–Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES, through the implementation of the project “Big data to improve atmospheric emission inventories (BigAir)”, PTDC/EAM-AMB/2606/2020. Furthermore, the authors also acknowledge the financial support to CESAM (UIDB/50017/2020+UIDP/50017/2020+LA/P/0094/2020), to FCT/MCTES through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and COMPETE2020. Ismael Casotti Rienda is grateful to the Portuguese Foundation of Science and Technology (FCT) for funding the scholarship SFRH/BD/144550/2019. The research work was also supported by the LIFE-REMY (LIFE20 PRE/IT/000004) and the Spanish National Research Project NEXT (PID2019-110623RB-I00), funded by MCIN/AEI/10.13039/501100011033/.
Databáze: OpenAIRE