Predicting Fluctuating Rates of Hospitalizations in Relation to Influenza Epidemics and Meteorological Factors

Autor: Mireille Batton-Hubert, Marianne Sarazin, Radia Spiga
Přispěvatelé: Service de Santé Publique et d'Information Médicale, Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E), Département Décision en Entreprise : Modélisation, Optimisation (DEMO-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Henri Fayol, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Institut Mines-Télécom [Paris] (IMT), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Ingénierie et Santé (CIS-ENSMSE), Département d’Information Médical [Centre Hospitalier de Firminy], Centre Hospitalier de Firminy, CHU Saint-Etienne, Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), HAL-UPMC, Gestionnaire, Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
0301 basic medicine
Male
Pediatrics
Viral Diseases
Atmospheric Science
Critical Care and Emergency Medicine
Epidemiology
Linear Discriminant Analysis
Geographical Locations
0302 clinical medicine
Mathematical and Statistical Techniques
Statistics
Medicine and Health Sciences
030212 general & internal medicine
Child
Principal Component Analysis
Multidisciplinary
Physics
Electromagnetic Radiation
Temperature
Middle Aged
Markov Chains
Hospitals
3. Good health
Hospitalization
Europe
Infectious Diseases
Child
Preschool

Physical Sciences
symbols
Epidemiological Methods and Statistics
Medicine
Female
Solar Radiation
France
Seasons
Statistics (Mathematics)
Research Article
Adult
medicine.medical_specialty
Adolescent
Science
Time lag
Influenza epidemics
Research and Analysis Methods
03 medical and health sciences
symbols.namesake
Meteorology
Influenza
Human

medicine
Humans
Solar Activity
Statistical Methods
Epidemics
Aged
Hospitalizations
Models
Statistical

business.industry
Infant
Newborn

Infant
Humidity
Emergency department
Linear discriminant analysis
Infant newborn
Pearson product-moment correlation coefficient
Influenza
Health Care
030104 developmental biology
[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie
Health Care Facilities
People and Places
Earth Sciences
Classification methods
[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie
business
Mathematics
Zdroj: PLoS ONE
PLoS ONE, 2016, 11 (6), pp.e0157492. ⟨10.1371/journal.pone.0157492⟩
PLoS ONE, Vol 11, Iss 6, p e0157492 (2016)
PLoS ONE, Public Library of Science, 2016, 11 (6), pp.e0157492. ⟨10.1371/journal.pone.0157492⟩
ISSN: 2007-2015
1932-6203
Popis: IntroductionIn France, rates of hospital admissions increase at the peaks of influenza epidemics. Predicting influenza-associated hospitalizations could help to anticipate increased hospital activity. The purpose of this study is to identify predictors of influenza epidemics through the analysis of meteorological data, and medical data provided by general practitioners.MethodsHistorical data were collected from Meteo France, the Sentinelles network and hospitals' information systems for a period of 8 years (2007-2015). First, connections between meteorological and medical data were estimated with the Pearson correlation coefficient, Principal component analysis and classification methods (Ward and k-means). Epidemic states of tested weeks were then predicted for each week during a one-year period using linear discriminant analysis. Finally, transition probabilities between epidemic states were calculated with the Markov Chain method.ResultsHigh correlations were found between influenza-associated hospitalizations and the variables: Sentinelles and emergency department admissions, and anti-correlations were found between hospitalizations and each of meteorological factors applying a time lag of: -13, -12 and -32 days respectively for temperature, absolute humidity and solar radiation. Epidemic weeks were predicted accurately with the linear discriminant analysis method; however there were many misclassifications about intermediate and non-epidemic weeks. Transition probability to an epidemic state was 100% when meteorological variables were below: 2°C, 4 g/m3 and 32 W/m2, respectively for temperature, absolute humidity and solar radiation. This probability was 0% when meteorological variables were above: 6°C, 5.8g/m3 and 74W/m2.ConclusionThese results confirm a good correlation between influenza-associated hospitalizations, meteorological factors and general practitioner's activity, the latter being the strongest predictor of hospital activity.
Databáze: OpenAIRE