Dynamics of plasma condensations in a gravitationally stratified coronal loop
Autor: | Petra Kohutova, Erwin Verwichte |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
Stellar magnetic field Astronomy and Astrophysics Astrophysics Coronal loop 01 natural sciences Corona Pressure-gradient force 010305 fluids & plasmas Nanoflares Space and Planetary Science Coronal plane 0103 physical sciences Physics::Space Physics Coronal rain Astrophysics::Solar and Stellar Astrophysics 010303 astronomy & astrophysics Pressure gradient QC QB |
ISSN: | 0004-6361 |
Popis: | Context\ud \ud Coronal rain composed of cool plasma condensations falling from coronal heights is a phenomenon occurring in footpoint-heated coronal loops as a result of thermal instability. High-resolution coronal rain observations suggest that condensations move with less than free-fall speed and can sometimes undergo longitudinal oscillations. \ud \ud Aims\ud \ud We investigate the evolution and dynamics of plasma condensations in a gravitationally stratified coronal loop. \ud \ud Methods\ud \ud We carried out 2.5 dimensional magnetohydrodynamic simulations of a cool plasma condensation in a gravitationally stratified coronal loop and analysed its evolution, kinematics, and the evolution of the forces acting on the condensation. We further propose a one-dimensional analytical model of the condensation dynamics. \ud \ud Results\ud \ud \ud The motion of plasma condensations is found to be strongly affected by the pressure of the coronal loop plasma. Maximum downward velocities are in agreement with recent coronal rain observations. A high coronal magnetic field or low condensation mass can lead to damped oscillatory motion of the condensations that are caused by the pressure gradient force and magnetic tension force that results from bending of the magnetic field in the lower part of the coronal loop. Period and damping scaling time of the oscillatory motion seen in the simulations are consistent with values predicted by the model.\ud \ud Conclusions\ud \ud The combined effect of pressure gradients in the coronal loop plasma and magnetic tension force that results from changes in magnetic field geometry can explain observed sub-ballistic motion and longitudinal oscillations of coronal rain \ud |
Databáze: | OpenAIRE |
Externí odkaz: |