Coextension of scalars in operad theory
Autor: | Philip Hackney, Gabriel C. Drummond-Cole |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Functor Codomain General Mathematics Mathematics - Category Theory Arity Mathematics::Algebraic Topology 18M60 18A40 55P48 18M85 Factorization Mathematics::K-Theory and Homology Operad theory Mathematics::Quantum Algebra Mathematics::Category Theory Domain (ring theory) FOS: Mathematics Algebraic Topology (math.AT) Category Theory (math.CT) Mathematics - Algebraic Topology Axiom Mathematics |
Zdroj: | Mathematische Zeitschrift. 301:275-314 |
ISSN: | 1432-1823 0025-5874 |
DOI: | 10.1007/s00209-021-02840-5 |
Popis: | The functor between operadic algebras given by restriction along an operad map generally has a left adjoint. We give a necessary and sufficient condition for the restriction functor to admit a right adjoint. The condition is a factorization axiom which roughly says that operations in the codomain operad can be written essentially uniquely as operations in arity one followed by operations in the domain operad. 40 pages |
Databáze: | OpenAIRE |
Externí odkaz: |