Linearizability of the perturbed Burgers equation
Autor: | José Geraldo Pereira, Roberto André Kraenkel, E. C. De Rey Neto |
---|---|
Přispěvatelé: | Universidade Estadual Paulista (Unesp) |
Rok vydání: | 1998 |
Předmět: | |
Zdroj: | Scopus Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP |
ISSN: | 1095-3787 1063-651X |
DOI: | 10.1103/physreve.58.2526 |
Popis: | We show in this letter that the perturbed Burgers equation $u_t = 2uu_x + u_{xx} + \epsilon ( 3 \alpha_1 u^2 u_x + 3\alpha_2 uu_{xx} + 3\alpha_3 u_x^2 + \alpha_4 u_{xxx} )$ is equivalent, through a near-identity transformation and up to order \epsilon, to a linearizable equation if the condition $3\alpha_1 - 3\alpha_3 - 3/2 \alpha_2 + 3/2 \alpha_4 = 0$ is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas. Comment: 10 pages, RevTeX, no figures |
Databáze: | OpenAIRE |
Externí odkaz: |