Linearizability of the perturbed Burgers equation

Autor: José Geraldo Pereira, Roberto André Kraenkel, E. C. De Rey Neto
Přispěvatelé: Universidade Estadual Paulista (Unesp)
Rok vydání: 1998
Předmět:
Zdroj: Scopus
Repositório Institucional da UNESP
Universidade Estadual Paulista (UNESP)
instacron:UNESP
ISSN: 1095-3787
1063-651X
DOI: 10.1103/physreve.58.2526
Popis: We show in this letter that the perturbed Burgers equation $u_t = 2uu_x + u_{xx} + \epsilon ( 3 \alpha_1 u^2 u_x + 3\alpha_2 uu_{xx} + 3\alpha_3 u_x^2 + \alpha_4 u_{xxx} )$ is equivalent, through a near-identity transformation and up to order \epsilon, to a linearizable equation if the condition $3\alpha_1 - 3\alpha_3 - 3/2 \alpha_2 + 3/2 \alpha_4 = 0$ is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.
Comment: 10 pages, RevTeX, no figures
Databáze: OpenAIRE