Affine Vertex Operator Algebras and Modular Linear Differential Equations
Autor: | Kiyokazu Nagatomo, Masanobu Kaneko, Yuichi Sakai, Yusuke Arike |
---|---|
Rok vydání: | 2016 |
Předmět: |
Modular linear differential equation
010308 nuclear & particles physics 010102 general mathematics Statistical and Nonlinear Physics Modular invariance 01 natural sciences Affine geometry Algebra Affine coordinate system Affine vertex operator algebra Vertex operator algebra Affine representation 2-dimensional conformal field theory Affine hull 0103 physical sciences Affine group Affine space 0101 mathematics Mathematical Physics Mathematics Knizhnik–Zamolodchikov equations |
Zdroj: | Letters in Mathematical Physics |
ISSN: | 1573-0530 0377-9017 |
DOI: | 10.1007/s11005-016-0837-7 |
Popis: | In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20. |
Databáze: | OpenAIRE |
Externí odkaz: |