Templated Assembly of Pore-forming Peptides in Lipid Membranes
Autor: | Barbara Rothen-Rutishauser, Jonathan List, Stefano Vanni, Laetitia Haeni, Aziz Fennouri, Michael Mayer, Jessica Dupasquier |
---|---|
Rok vydání: | 2019 |
Předmět: |
Lipid Bilayers
Biophysics Peptide Pore-forming peptide or protein Resistive pulse sensing 010402 general chemistry 01 natural sciences Cell membrane Lipid membrane Dna oligonucleotides medicine Nanotechnology Lipid bilayer QD1-999 chemistry.chemical_classification Chemistry Template Biomolecule Cell Membrane General Medicine General Chemistry Lipids 0104 chemical sciences Nanopore medicine.anatomical_structure Cell killing Membrane Targeted drug delivery Peptides |
Zdroj: | CHIMIA, Vol 73, Iss 1-2 (2019) |
ISSN: | 2673-2424 0009-4293 |
DOI: | 10.2533/chimia.2019.59 |
Popis: | Abstract: Pore-forming peptides are of interest due to their antimicrobial activity and ability to form gateways through lipid membranes. Chemical modification of these peptides makes it possible to arrange several peptide monomers into well-defined pore-forming structures using various templating strategies. These templated super-structures can exert antimicrobial activity at significantly lower total peptide concentration than their untemplated equivalents. In addition, the chemical moieties used for templating may be functionalized to interact specifically with targeted membranes such as those of pathogens or cancer cells. A range of molecular templates has been explored, including dimerization of pore-forming monomers, their covalent attachment to cyclodextrin, porphyrin or fullerene scaffolds as well as attachment of amino acid linkers or nucleic acid constructs to generate assemblies of 4 to 26 peptides or proteins. Compared to free peptide monomers, templated pore assemblies showed increased membrane affinity, prolonged open-state lifetimes of the pores and more frequent pore formation due to higher local concentration. These constructs are useful model systems for biophysical studies to understand porin and ion channel proteins and their mechanisms of insertion into lipid membranes. Recently designed DNA-templates are expanding the usefulness of templated pore assemblies beyond applications of cell killing and may include targeted drug delivery and accelerate the emerging field of single-molecule detection and characterization of biomolecules by nanopore-based resistive pulse sensing. |
Databáze: | OpenAIRE |
Externí odkaz: |