First Steps in the Algorithmic Reconstruction of Digital Convex Sets

Autor: Lama Tarsissi, Andrea Frosini, Simone Rinaldi, Laurent Vuillon, Paolo Dulio
Přispěvatelé: Department of Mathematics and Computer Science / Dipartimento di Scienze Matematiche e Informatiche 'Roberto Magari' (DSMI), Università degli Studi di Siena = University of Siena (UNISI), Laboratoire de Mathématiques (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Word
Word, Aug 2017, Montreal, Canada. ⟨10.1007/978-3-319-66396-8⟩
Lecture Notes in Computer Science ISBN: 9783319663951
WORDS
DOI: 10.1007/978-3-319-66396-8⟩
Popis: International audience; Digital convex (DC) sets plays a prominent role in the framework of digital geometry providing a natural generalization to the concept of Euclidean convexity when we are dealing with polyominoes, i.e., finite and connected sets of points. A result by Brlek, Lachaud, Provençal and Reutenauer (see [4]) on this topic sets a bridge between digital con-vexity and combinatorics on words: the boundary word of a DC poly-omino can be divided in four monotone paths, each of them having a Lyndon factorization that contains only Christoffel words. The intent of this paper is to provide some local properties that a boundary words has to fulfill in order to allow a single point modifications that preserves the convexity of the polyomino.
Databáze: OpenAIRE