Reconstruction of Smooth 3D Color Functions from Keypoints: Application to Lossy Compression and Exemplar-Based Generation of Color LUTs

Autor: Amal Mahboubi, Christine Porquet, David Tschumperlé
Přispěvatelé: Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)
Rok vydání: 2020
Předmět:
Zdroj: SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2020, 13 (3), pp.1511-1535. ⟨10.1137/19M1306798⟩
ISSN: 1936-4954
DOI: 10.1137/19m1306798
Popis: International audience; 3D CLUTs (Color Look Up Tables) are popular digital models used in artistic image and video processing, for color grading, simulation of analog films, and more generally for the description and application of generic non-parametric color transformations. The relatively large size of these models leads to high data storage requirements when trying to distribute them on a large scale (e.g. several hundred at a time). In this article, an effective technique based on a multi-scale anisotropic diffusion scheme is proposed, for the lossy compression of generic CLUTs regularly sampled on a 3D grid. Our method exhibits high average compression rate, while ensuring visually indistinguishable differences with the original (uncompressed) CLUTs. In a second step, a variation of our algorithm for exemplar-based generation of CLUTs is developed, in order to create a complete CLUT from a single pair of before/after images that accounts for the color transformation.
Databáze: OpenAIRE