New High-Resolution Analysis of the ν3 Band of the 15N16O2 Isotopomer of Nitrogen Dioxide by Fourier Transform Spectroscopy
Autor: | S. Voigt, John P. Burrows, S. Himmelmann, Johannes Orphal, M. A. Smirnov, Jean-Marie Flaud, Agnes Perrin |
---|---|
Rok vydání: | 2000 |
Předmět: |
Coupling constant
Physics Absorption spectroscopy Transition dipole moment Atomic and Molecular Physics and Optics Fourier transform spectroscopy Isotopomers chemistry.chemical_compound symbols.namesake Fourier transform Nuclear magnetic resonance chemistry symbols Nitrogen dioxide Physical and Theoretical Chemistry Atomic physics Spectroscopy Line (formation) |
Zdroj: | Journal of Molecular Spectroscopy. 204:72-79 |
ISSN: | 0022-2852 |
DOI: | 10.1006/jmsp.2000.8190 |
Popis: | New high-resolution Fourier transform absorption spectra of an (15)N(16)O(2) isotopic sample of nitrogen dioxide were recorded at the University of Bremen in the 6.3-µm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242, 367-377 (1991)], a new and more extended analysis of the nu(3) band located at 1582.1039 cm(-1) has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model which takes into account both the Coriolis interactions between the spin-rotation energy levels of the (001) vibrational state with those of the (020) and (100) states and the spin-rotation resonances within each of the NO(2) vibrational states. Precise vibrational energies and rotational, spin-rotation, and coupling constants were obtained in this way for the first triad of (15)N(16)O(2) interacting states {(020), (100), (001)}. Finally, a comprehensive list of line positions and line intensities of the {nu(1), 2nu(2), nu(3)} interacting bands of (15)N(16)O(2) was generated, using for the line intensities the transition moment operators which were obtained previously for the main isotopic species. Copyright 2000 Academic Press. |
Databáze: | OpenAIRE |
Externí odkaz: |