Smooth Families of Tori and Linear K\'ahler Groups

Autor: Benoît Claudon
Přispěvatelé: Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE40-0011,Hodgefun,Groupes fondamentaux, Théorie de Hodge et Motifs(2016)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Annales de la Faculté des Sciences de Toulouse. Mathématiques.
Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2018, 27 (3), pp.477-496. ⟨10.5802/afst.1576⟩
ISSN: 0240-2963
2258-7519
DOI: 10.5802/afst.1576⟩
Popis: That short note, meant as an addendum to [CCE14], enhances the results contained in loc. cit. In particular it is proven here that a linear K{\"a}hler group is already the fundamental group of a smooth complex projective variety. This is achieved by studying the relative deformation of the total space of a smooth family of tori in an equivariant context.
Comment: A flaw in the previous version. The main theorem is now stated for smooth families of tori with compact base. It does not affect the application to linear K{\"a}hler groups. To appear in Annales de la Facult{\'e} des Sciences de Toulouse
Databáze: OpenAIRE