Smooth Families of Tori and Linear K\'ahler Groups
Autor: | Benoît Claudon |
---|---|
Přispěvatelé: | Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE40-0011,Hodgefun,Groupes fondamentaux, Théorie de Hodge et Motifs(2016) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Fundamental group Group (mathematics) 010102 general mathematics Torus Context (language use) General Medicine Space (mathematics) 01 natural sciences Mathematics - Algebraic Geometry 0103 physical sciences Equivariant map 32Q15 32Q55 32G05 14D07 010307 mathematical physics [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] 0101 mathematics Mathematics::Symplectic Geometry Projective variety Mathematics |
Zdroj: | Annales de la Faculté des Sciences de Toulouse. Mathématiques. Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2018, 27 (3), pp.477-496. ⟨10.5802/afst.1576⟩ |
ISSN: | 0240-2963 2258-7519 |
DOI: | 10.5802/afst.1576⟩ |
Popis: | That short note, meant as an addendum to [CCE14], enhances the results contained in loc. cit. In particular it is proven here that a linear K{\"a}hler group is already the fundamental group of a smooth complex projective variety. This is achieved by studying the relative deformation of the total space of a smooth family of tori in an equivariant context. Comment: A flaw in the previous version. The main theorem is now stated for smooth families of tori with compact base. It does not affect the application to linear K{\"a}hler groups. To appear in Annales de la Facult{\'e} des Sciences de Toulouse |
Databáze: | OpenAIRE |
Externí odkaz: |