Ontology-Oriented Inference-Based Learning Content Management System

Autor: Kholief, Mohamed
Rok vydání: 2019
Předmět:
DOI: 10.5281/zenodo.3346857
Popis: The world is witnessing the electronic revolution in many fields of life such as health, education, government and commerce. E-learning is considered one of the hot topics in the e-revolution as it brings with it rapid change and greater opportunities to increase learning ability in colleges and schools. The fields of Learning Management Systems (LMS) and Learning Content Management Systems (LCMS) are full of open source and commercial products, however LCMS systems in general inherit the drawbacks of information system such as weakness in user expected information retrieval and semantic modelling and searching of contents & courses. In this paper, we propose a new prototype of LCMS that uses the Semantic Web technologies and Ontology Reasoner with logical rules, as an inference engine to satisfy the constraints and criteria specified by a user, and retrieves relevant content from the domain ontology in an organized fashion. This enables construction of a user-specific course, by semantic querying for topics of interest. We present the development of an Ontology-oriented Inference-based Learning Content Management System OILCMS, its architecture, conception and strengths.
Databáze: OpenAIRE